
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Final release of highly available and scalable grid services
D3.2.16

Due date of deliverable: April 1st, 2010
Actual submission date: April 1st, 2010

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.2

Task number: T3.2.1, T3.2.2, T3.2.3, T3.2.4, T3.2.5

Responsible institution: VUA
Editor & and editor’s address: Guillaume Pierre

Vrije Universiteit Amsterdam
Dept. of Computer Science

De Boelelaan 1081a
1081HV Amsterdam

The Netherlands

Version 1.0 / Last edited by Guillaume Pierre / March 25, 2010

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)



Revision history:
Version Date Authors Institution Section affected, comments

0.0 16/02/10 Guillaume Pierre VUA Initial template
0.1 19/02/10 Guillaume Pierre VUA First parts of the content
0.2 19/02/10 Jeffrey Napper VUA Distributed Servers content
0.3 24/02/10 Matej Artač XLAB DIXI content
0.3 03/03/10 Thorsten Schüttč ZIB Pubsub Service
0.4 03/03/10 Corina Stratan VUA RSS section
0.5 16/03/10 Massimo Coppola, Emanuele

Carlini
CNR SRDS section

0.6 17/03/10 Jörg Domaschka ULM Added section
0.7 18/03/10 Massimo Coppola, Emanuele

Carlini
CNR Changes to SRDS section

0.8 21/03/10 Massimo Coppola CNR Last changes to bibliography and document.
0.81 24/03/10 Massimo Coppola CNR Comments from internal reviewer concerning SRDS

addressed.
0.9 25/03/10 Jeffrey Napper VUA Edited discussion of distributed servers according to

comments from internal review.
01.0 25/03/10 Guillaume Pierre VUA Final wrap-up according to internal review.

Reviewers:
Ramon Nou (BSC) and Benjamin Aziz (STFC)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.2.1 Design and implementation of distributed servers VUA∗

T3.2.2 Design and implementation of a scalable publish/subscribe
system

ZIB∗

T3.2.3 Design and implementation of a service/resource discovery
system

CNR∗, VUA

T3.2.4 Design and implementation of a virtual node system ULM∗

T3.2.5 Cloud computing services VUA∗

T3.2.6 Distributed XtreemOS Infrastructure (DIXI) XLAB∗

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader



Executive summary

Work package WP3.2 is dedicated to building a collection of highly-available
and scalable services as a support of the development of the XtreemOS infrastruc-
ture. We therefore designed and built several services that respectively address is-
sues of distribution transparency, information dissemination, service and resource
discovery, fault-tolerance, and inter-service communication. In addition, we in-
vestigated the relationships between XtreemOS and the emerging area of Cloud
computing.

The present deliverable mostly aims at delivering our service implementations.
These implementations can be found in the publicly-available svn repository of the
XtreemOS project. We complement this code delivery with a brief description of
each delivered service and its contribution to the project as a whole.

1



1 Introduction

Work package WP3.2 is dedicated to building a collection of highly-available and
scalable services as a support of the development of the XtreemOS infrastructure.
We therefore designed and built several services that respectively address issues of
distribution transparency (see Section 2), information dissemination (Section 3),
service and resource discovery (Section 4), fault-tolerance (Section 5), and inter-
service communication (Section 6). In addition, we investigated the relationships
between XtreemOS and the emerging area of Cloud computing (Section 7).

The present deliverable mostly aims at delivering our service implementations.
These implementations can be found in the publicly-available svn repository of the
XtreemOS project. We complement this code delivery with a brief description of
each delivered service and its contribution to the project as a whole.

2 Design and implementation of distributed servers

When building a large-scale distributed service made of multiple service instances,
it is important to give users a simple contact address where queries can be sent.
The Distributed Servers system provides location transparent services using a sin-
gle distributed server address that clients connect to and can thereafter be moved
transparently among multiple locations [39]. Mobile IPv6 (MIPv6) route opti-
mization transparently adjusts the clients’ connections [20]: all IPv6 connections
from the client are atomically changed to each location in order to avoid triangu-
lar routing. The TCP Connection Passing (TCPCP) Linux kernel module handles
migrating the network stack at the server end [1]. The set of nodes that manages
the distributed server address is composed of a contact node—to which a client
first connects—and a set of server nodes that can accept or initiate client hand-
offs. The distributed server address is simply a mobile IPv6 address [11]. When
a client is handed off, the server endpoint of all of the client’s IP connections
are transferred to different server for load-balancing or for client-specific process-
ing. However, Distributed Servers can provide server mobility, inverting the mo-
bile host functionality of MIPv6. The Distributed Servers system depends on all
parties—clients and servers—possessing and using IPv6 addresses with support
for Mobile IPv6, which is well supported in most modern operating systems.

The standard MIPv6 implementation in Linux is handled by a user-level dae-
mon, called mip6d, that manages mobility events. Different roles in MIPv6 are
handled by different configurations of the same mip6d daemon: the Mobile Host
(MH) changes network addresses generating mobility events; the Home Agent
(HA) manages the MH home address in the home network for connectivity of new

2



M
IP

v6
 P

ac
ke

ts

M
IP

v6
 P

ac
ke

ts

M
IPv6 Packets

IPv6 Tunnels

Contact Node

Server Nodes

Home Agent

M
IP

v6
 P

ac
ke

ts

Client Node

CoTi, CoT, Data Packets

HoTi, HoT

HoTi, HoT

IPv6 Tunnel

Figure 1: Overview of Distributed Servers design architecture. All MIPv6 control
packets from server nodes are routed through IPv6 tunnels to a spoofed Home
Agent on the Contact Node. The route optimization packets (HoTi,HoT) are then
routed to the real Home Agent, which in turn routes them to the client node.

connections; and the Correspondent Node (CN) represents the other endpoint of
connections with the MH during mobility events [20].

Our design places the mip6d in a controlled environment without modifying
the MIPv6 implementation to simulate mobility of the server end of a connection
to clients. The relationship between the MIPv6 and Distributed Servers termi-
nology is straightforward. Figure 1 shows the relationships between the different
servers and the client. The Home Agent (HA) is a component of MIPv6 and
serves precisely the same role in Distributed Servers. The Distributed Servers
contact node accepts new connections from clients and is registered with the HA,
appearing as the Mobile Host. Other server nodes accept client handoffs from
the contact node and other server nodes. Both the contact node and set of server
nodes are configured as Mobile Hosts in the MIPv6 terminology. Clients that
contact these nodes should be configured as Correspondent Nodes.

A typical client handoff proceeds as follows: (1) the TCPCP module at the
donor is used to freeze all of the clients’ connections and to copy the state from the
corresponding network stack; (2) the donor sends the saved state to the receiver;
(3) the receiver uses the TCPCP module to recreate the corresponding connections
to the client; (4) the dsco daemon at the receiver injects spoofed packets to cause
mip6d to initiate Mobile IPv6 route optimization; and (5) the dsco daemon at the

3



donor injects spoofed packets to break the clients bindings in the mip6d at the
donor. The routing of MIPv6 packets is illustrated in Figure 1.

Distributed Servers provide an abstraction that allows a group of server pro-
cesses to appear as a single entity to its clients, all while transferring a client’s
connection between servers in the group. The Distributed Servers platform was
first included in XtreemOS 2.1. It uses a collection of scripts, a kernel mod-
ule, and a system-level daemon to provide the Distributed Servers abstraction to
applications. Applications use a separate library called Gecko to manage client
handoffs between different servers [40]. The Gecko library provides a high-level
API that coordinates client handoffs and communicates with the system-level dsco
daemon. This daemon then injects or drops packets to manipulate the unmodified
Mobile IPv6 mip6d daemon to implement Distributed Servers behavior at each
server.

3 Design and implementation of a scalable
publish/subscribe system

Developing large-scale distributed services is a hard problem. The two main is-
sues are scalability and fault tolerance. Therefore, we based the PubSub service
on distributed hash tables (DHT, [38]) which are a proven technology particularly
suited for our scenario. They provide a key-value store with efficient lookups
given the value of an item. The cost of lookups in DHTs scales logarithmically
with the size of the system. So even in very large deployments low latency lookups
are possible, while the throughput scales almost linearly with the number of nodes.
The DHT organizes the participating nodes in a ring structure which is autonomi-
cally maintained and repaired when nodes join or leave the system.

For XtreemOS, we extended an existing key-value store, Scalaris [31], to sup-
port PubSub primitives. In contrast to other distributed key-value stores, it sup-
ports the execution of arbitrary transactions on the stored data. Scalaris is made up
of three layers: (a) a P2P overlay, (b) a primitive key-value store and (c) a transac-
tion layer. The overlay layer provides the aforementioned properties: scalability
and failure tolerance. The second layer implements a simple key-value store with
replication and weak consistency. The transaction layer extends the second layer
with transactions and strong consistency. A lot of efforts in XtreemOS went into
tuning and improving these three layers. The resulting data store is used by SRDS
for storing monitoring information.

The PubSub service is topic based, i.e. nodes can subscribe to topics identified
by a keyword and messages can be published to all subscribers of a given topic. It
is implemented as an application running on top of Scalaris. It uses transactions

4



for maintaining the subscriber lists for each topic. The transactions guarantee
that all subscribe and unsubscribe operations are executed atomically. Parts of the
overlay structure are used to efficiently deliver the messages to the subscribers.

Scalaris is implemented in Erlang, a functional programming language de-
signed for distributed and fault-tolerant systems. For the key-value store as well
as the PubSub service, we provide an API based on HTTP and JSON. This API
can be easily accessed from most programming languages. For Java, we provide
a separate library which provides a more convenient API that hides the aspects
concerning the communication between the Java process and Scalaris.

4 Design and implementation of a service/resource
discovery system

The Service and Resource Directory Service (SRDS) is a meta-service allowing
both modules of an XtreemOS system and users, as well as their applications, to
keep track in an efficient and scalable way of the distributed status of the system.

The main task of SRDS within the XtreemOS architecture is to locate re-
sources according to the user needs, in this interacting primarily with the Ap-
plication Execution Management (AEM) service and with the Resource Selection
Service (RSS). Beside the resource directory service, the SRDS manages a wide
range of directory services, including the job directory service (JDS), the mobile
device directory service and the XOSD directory service.

The mechanism used to locate resources within XtreemOS exemplifies the
SRDS approach. When looking for resources, the SRDS leverages a combina-
tion of two distinct P2P approaches, the RSS one (very scalable and efficient in
answering queries based on constant-valued attributes of resources) and a DHT
network (still scalable and more suited to dynamically changing data), that pro-
vides additional information needed to refine the query results.

4.1 SRDS
The key requisites of the SRDS are those of the XtreemOS platform itself: scal-
ability with respect to the platform size and to the number of users, in terms of
service time, throughput, and reliability. The SRDS software architecture, shown
in Figure 2, is layered and inherently distributed, exploiting multiple P2P tech-
niques to meet those constraints.

• On each node of the XtreemOS platform, a lightweight service hub pro-
vides the SRDS API through the DIXI service bus, as well as through other

5



Information Management Layer

RSS

A
D

S

Scalaris
Overlay
Weaver

S
R
D

S
A
rc

h
it
e
c
tu

re

Query Provider Layer

Facade

Figure 2: SRDS overall architecture and main modules, which is present in each
XtreemOS enabled non-mobile device.

selectable adapters (Facade, in the figure). This means that each SRDS end-
point will typically receive queries originated on the same machine, but it
is also able to authenticate and serve remote service requests (e.g. from
mobile devices).

• The SRDS Query-Provider Layer transforms client requests into a combi-
nation of primitive operations over the various overlay, thus providing com-
plex query functionalities. Both the interface and the query transformation
layers are implemented in Java.

• In order to store and retrieve data, each physical machine participates in
one or more P2P networks, possibly of different type. Networks are dy-
namically enabled according to the characteristics of each one and to the
current system needs. Each query is thus forwarded through the networks
from where information will be gathered. The P2P network exploited can
be implemented in Java and run on the same or on a separate Java VM,
or can be used with Java adapters, like it happens with Scalaris. Dynamic
activation and interface adaptation to more independent DHT networks is
performed by the SRDS internal Information Management Layer (see also
Figure 3).

The ability to leverage a set of P2P networks, each one providing different
functionalities and properties, allows to achieve a good performance/overhead
trade-off for a broad set of query kinds. Besides, SRDS inherits the common
scalability and fault-tolerance traits of the P2P approaches it uses.

SRDS decouples the underlying physical overlay network from the logical
high level service, by using a name-space mechanism. According to the require-

6



ments of each SRDS client, a specific set of data (e.g. the list of active XtreemOS
Jobs) is mapped into a subspace of a specific DHT, without interfering with data
related to other services concurring on the same physical Distributed Hash Table
(DHT).

Three different P2P overlay networks are integrated in the SRDS architec-
ture. The Scalaris network (which also supports the publish/subscribe XtreemOS
service, and is described earlier in this document) is used when a transactional
behaviour is needed to control concurrent modification of the distributed data.
The RSS network, also described in this document, is exploited to achieve the
best scalability in resource location with respect to resource attributes which are
constant during the resource lifetime. A generic P2P construction framework,
OverlayWeaver [37] is used as foundation layer for general purpose directory ser-
vices.

For the sake of providing greater scalability to the directory services, in the
framework of the XtreemOS project a research activity focusing on P2P support
for complex queries has been pursued. Here we only report the XtreemOS related
part of the P2P line of research currently developed at ISTI-CNR. Two different
DHT solutions have been developed in order to provide scalable multi-attribute

DHT Layer

Information Management Layer

nam
espace 1

namespace 2

na
m

es
pa

ce
 3

DHT Ring

(a) Single DHT Ring

Scalaris
DHT Layer

Information Management Layer

OW
DHT Layer

DHT Ring DHT Ring

(b) Multiple DHT Rings

Figure 3: Different implementations of the DHT layer, exploiting either a single
DHT ring to hold the information of multiple namespaces (key space partitioning)
or a distinct DHT ring for each namespace.

7



range-queries over a DHT overlay, and one of the two has been integrated within
the SRDS.

The Distributed Digest Trie (DDT) approach [4] has been developed as a gen-
eralisation of the CONE approach [41]. DDT provides search functionalities over
dynamic data, based on a distributed trie data structure and customisable digest
functions. DDT improves on the CONE approach as it provides full-fledged range
queries and supports customisable digest functions to tune the accuracy/overhead
trade-off, where CONE behaves like a distributed heap and can only handle one-
side-bounded queries. DDT has been integrated in the OverlayWeaver framework,
but is not currently used within XtreemOS.

The REMED (REduce MEssages in Dht) original mechanism [16] has been
added to the OverlayWeaver framework, extending the MAAN approach [3].
REMED supports range queries over dynamically changing data with reduced
overhead. The optimization focuses on the updates needed for data stored within
the DHT. In REMED, data update frequency is dynamically tuned according to the
popularity of specific attributes as measured by the queries received, and taking
into account the impact on the query results. REMED integrates with the existing
MAAN query resolution mechanism, and is implemented as an additional Over-
layWeaver module. Its use in the SRDS specifically allows efficient space-based
retrieval of objects from the Mobile-Device Directory Service.

4.2 RSS

The role of the Resource Selection Service (RSS) is to search for resources that
match a set of criteria specified in the job description files. The search in RSS is
done only based on static resource attributes (e.g., the CPU frequency, the amount
of memory, the version of a software library). Specifically, RSS handles queries
that define a desired range for each of the static attributes that describe the re-
sources. In a further step, SRDS filters the set of resources provided by RSS
according to dynamic parameters.

RSS is a decentralized service, in which the resource nodes are organized in
a P2P overlay. Each node provides information about itself (that is, its own static
attribute values). The nodes are placed in a virtual multi-dimensional space, in
which each attribute corresponds to one dimension. The coordinates of the nodes
in this space correspond to their attribute values. In order to allow for efficient
searching, the space is recursively divided into nested cells, with the nodes main-
taining connections to other nodes from the neighboring cells.

8



The RSS overlay is maintained by using gossip protocols. The Cyclon proto-
col [43] has the role of periodically providing each node with references to a set of
other random nodes from the system. On top of Cyclon, we use a modified version
of the Vicinity protocol [44] to maintain links to nodes that belong to neighboring
cells, for all the possible directions in the multi-dimensional space and for all the
nesting levels.

A query can be initiated by any node in the system, and is routed through the
overlay links until it reaches the cells that overlap with the required ranges. This
routing mechanism is important for scalability, as the number of hops needed to
reach a matching cell does not depend on the system size. Also, due to the use of
gossip protocols, the system is tolerant to node failures. More details about the
design and performance of RSS can be found in [9].

The nodes participating to an RSS overlay belong to the same Virtual Organi-
zation; in a multi-VO grid there should be a separate RSS overlay for each VO. In
order to prevent attacks, RSS provides authentication mechanisms to ensure that
the overlay only contains node belonging to the respective Virtual Organization.
The nodes are authenticated with X.509 certificates and all messages exchanged
among them are digitally signed.

RSS is implemented in Java, its parameters (including the set of static at-
tributes) can be modified through a configuration file. Most of the communication
within the overlay is done through TCP and, for efficiency, the nodes maintain
persistent connections to their neighbors.

5 Design and implementation of a virtual node sys-
tem

In a distributed application some processes may have a key role so that their failure
would be critical to the entire application. In case the application has interaction
with the outside world also availability suffers.

We propose replication as a solution to both issues. Replication increases
availability of services on one side and, on the other side, provides reliability of
critical components. The Virtual Nodes replication framework provides replica-
tion support for Java services.

Replication is expensive in terms of performance. Thus, it is important to fine-
tune replication strategies towards the needs of the application to be replicated.
Therefore, Virtual Nodes comes with high configurability as its key feature. Ba-
sically, there are three main parameters to be set at server-side. The number and
location of replicas determines the degree of resilience to node failures. The repli-
cation strategy defines the operations the replicated service is allowed to execute

9



and also decides on the achievable throughput and computation power required.
Finally, the middleware adapter sets the API clients have to use in order to access
the service.

Virtual Nodes supports two basic replication strategies: active replication and
passive replication. In passive replication requests are only executed by a single
and fixed replica (called leader) which pushes modifications of the application
state to the other replicas (called backups). Passive replication imposes barely
any restrictions on the code of the replicated application so that it can be widely
applied. As a downside, it requires sequential execution of requests. Active repli-
cation in turn is more rigid with regards to implementation restrictions. It requires
that the implementation of the application be deterministic. This is due to the
fact that all replicas execute requests independently and still have to have consis-
tent states. On the upside, it allows concurrent execution of request, as long as
scheduling of threads is deterministic. Virtual Nodes comes with a set of deter-
ministic scheduling algorithms that allow a fine-grained tuning of concurrency. A
consequence of concurreny is higher throughput when using active replication.

Virtual Nodes is one of very few replication frameworks that does neither
require a fixed configuration of the number of replicas nor the locations they run
on. This means, that it is possible to add and remove replicas at run-time and to
even instantiate them on locations that have not been known at startup of the very
first replica. All location- and configuration-related issues are handeled within the
replica group in a distributed manner. An instance of Virtual Nodes is completely
self-contained in a way that it also replicates its management information. This
makes it independent from third-party services that may constitute a single-point
of failure.

Finally, Virtual Nodes is opaque towards the middleware API the client ap-
plication uses. It is only required to implement a middleware adapter that maps
invocations of the middleware API to calls of the framework. For the time being,
Virtual Nodes comes with adapters for Java RMI and the Distributed XtreemOS
Interface which cover nearly all applications being used in XtreemOS. Both mid-
dleware adapters provide a powerful yet simple user interface to service providers
(i.e., administrators) and are fully transparent to service users. In particular, the
code of a client application does not need to be modified when the service is repli-
cated with Virtual Nodes.

The usability of Virtual Nodes was shown by replicating an off-the-shelf POP3
service in less than a week. Furthermore, the successfull integration of Virtual
Nodes with DIXI in order to replicate XtreemOS’ application execution manage-
ment (AEM) infrastructure makes Virtual Nodes a key component to the reliability
of XtreemOS.

10



6 Distributed XtreemOS Infrastructure (DIXI)
During the development of XtreemOS components, most notably the AEM, a need
emerged for a framework and a message bus that would offer quick prototyping of
the services, provide a staging environment for the XtreemOS services, simplify
a development of a distributed system, composed of services, provide a commu-
nication layer between services running on the same node and provide commu-
nication between the nodes. To accommodate these requirements, we developed
the Distributed XtreemOS Infrastructure (DIXI). The related WP3.2 task was fo-
cused on meeting additional requirements expressed by the developers to adopt
the framework. In this section we summarise the features of the framework, while
the detailed description can be found in [48].

The framework consists of two main parts: the development helper tool, and
the runtime environment. The development helper tool’s purpose is to analyse the
implementation of any DIXI hosted components’ code, and produce such aux-
iliary code that can be derived from the service interfaces. The auxiliary code
enables that user’s services can easily be integrated into the DIXI framework, and
thus instantly be able to communicate and cooperate with any other service within
the framework.

The second main part consists of the runtime libraries that enable the deploy-
ment of the services, their hosting in the staging environment, and the actual abil-
ity to exchange service messages throughout the distributed environment. In this
respect the framework acts as a messaging bus. The stages hosted within the same
memory space use memory message queues. To gain inter-process and inter-host
communication capabilities, it also includes a special stage which supports the
message transportation using plain TCP/IP socket connectivity as well as the SSL
communication to gain privacy and the ability to properly authenticate the client
and server.

The stages implemented and running as services within the DIXI environment
represent a top layer which, unless required otherwise, is not aware of the specifics
of the target service location or the kind of transport that would be required to
invoke the service call and get the result back. This is made possible because the
framework performs the needed look-up of the hosts running the target service,
and directing the messages to their proper destination. In this process it takes
advantage of the high availability services such as Scalaris to publish the services’
presence. Intrinsically, we have added mechanisms to control individual stages’
lifetime, and the configuration of the framework has become scripting-friendly.

The runtime part is complete with the libraries that can be used by the clients
that are not a part of DIXI themselves. The bindings are provided for Java and
C. Further, the clients can use their own implementation of the communication
modules, since the service messages are exchangeable with the DIXI hosts using

11



Java binary serialization, or using XML. Initially the clients acted as a special case
of DIXI services, requiring a server socket to be accessible from the VOs. For
the final release, we enabled a proxy service permitting the utility of real clients
connecting from NAT or from behind a firewall. On top of the client programs
developed with usage of the client libraries, the users can also employ a DIXI
console which contains commands directly obtained from the services’ API.

The DIXI has therefore become an integral part of XtreemOS, hosting many
of the services itself and bridging others with wrappers.

7 Cloud computing services
Contrary to other tasks within WP3.2, the task on Cloud computing services did
not primarily aim at producing any specific service. Rather, it was meant as a sup-
port for investigating the relationships between XtreemOS and the then-emerging
area of Cloud computing. The results of this investigation can be found in deliv-
erable D3.2.15 [47]. Although this was not the prime goal of the task, one side
product of our investigations is the port of the open-source HBase NoSQL data
service to XtreemOS..

Relational databases (RDBMS) such as MySQL and Oracle have been popu-
lar for decades thanks to their conceptual simplicity, the great expressive power
of the SQL query language, and the performance improvements that have been
brought by decades of development. However, their great expressive power also
makes it very difficult to scale them up by using large numbers of computers in-
stead of a single powerful database server. Because users are assumed to be likely
to query any set of data items from the database through a single query, distributed
RDBMSs often rely on full replication to distribute their computation across mul-
tiple machines. Read queries can thus be addressed to any replica, and scale very
well. On the other hand, update queries must in one way or another be propagated
to all replicas. This means that, when using N database replicas, each replica
must process 1

N × ReadQueries + WriteQueries. When the number of write
queries alone grows beyond the capacity of a single replica server, no additional
improvement can be brought by adding extra replicas. The only solution to scale
an application further is to use data partitioning [45]. Partitioning data manually
is a difficult process, so developers prefer to rely on automatic data partitioning.

A new family of scalable database systems is being developed for Cloud com-
puting environments, exemplified by Amazon.com’s SimpleDB [2], Google’s Big-
table [6], Yahoo’s PNUTS [7] and Facebook’s Cassandra [21]. Although all these
systems are slightly different from each other, they all rely on the same underlying
principles. These systems scale nearly linearly with the number of servers they
are using, thanks to the systematic use of automatic data partitioning. On the other

12



hand, they do not support the SQL language and rather provide a simpler query
language. Data are organized in tables, which can be queried by primary key only.
Similarly, these systems do not support join operations. As restrictive as such lim-
itations may look, they do allow to build useful applications. Scalable database
systems typically provide weak consistency guarantees such as eventual consis-
tency [42] or single-record transactions, but one can apply stronger consistency as
an added layer on top [46].

To demonstrate how XtreemOS can be a great platform for PaaS Cloud com-
puting, we ported the HBase system [18] (an open-source clone of Bigtable) to
XtreemOS. This provides XtreemOS with a scalable database service that can be
used by Grid applications to store and query their structured data.

8 Conclusion
In conclusion, WP3.2 has delivered a collection of services that allowed the con-
struction of XtreemOS as a successful software development project.

In addition to producing code, it should be noted that WP3.2 has also been
very successful in terms of academic publications. Over the course of the project
the work package has published 3 journal articles [8, 35, 39], 1 book chapter [24],
11 papers in international conferences [4, 9, 14, 15, 25, 26, 27, 28, 32, 34, 36],
13 papers in international workshops [5, 10, 12, 13, 16, 17, 19, 22, 23, 29, 31,
33, 49] and 1 paper in a non peer-reviewed venue [30], notwithstanding papers
currently under review or soon to be submitted.

References
[1] Werner Almesberger. TCP connection passing. In Ottawa Linux Symposium,

July 2004.

[2] Amazon.com. Amazon SimpleDB. http://aws.amazon.com/
simpledb.

[3] Min Cai, Martin Frank, Jinbo Chen, and Pedro Szekely. MAAN: A Multi-
Attribute Addressable Network for Grid Information Services. In GRID ’03:
Proceedings of the 4th International Workshop on Grid Computing, page
184. IEEE Computer Society, 2003.

[4] D. Carfi, M. Coppola, D. Laforenza, and L. Ricci. DDT: A distributed data
structure for the support of P2P range query. In Collaborative Computing:
Networking, Applications and Worksharing, 2009. CollaborateCom 2009.
5th International Conference on, nov. 2009.

13



[5] E. Carlini, M. Coppola, P. Dazzi, D. Laforenza, S. Martinelli, and L. Ricci.
Service and resource discovery supports over p2p overlays. In Proceedings
of International Conference of Ultra Modern Telecommunications (ICUMT),
2009.

[6] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable : a distributed storage system for structured data. In Pro-
ceedings of The 7th USENIX Symposium on Operating Systems Design and
Implementation, pages 205–218, 2006.

[7] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-
stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and
Ramana Yerneni. PNUTS: Yahoo!’s hosted data serving platform. In Pro-
ceedings of the 34th International Conference on Very Large Data Bases,
pages 1277–1288, 2008.

[8] Massimo Coppola, Yvon Jegou, Brian Matthews, Christine Morin,
Luis Pablo Prieto, Oscar David Sanchez, Erica Y. Yang, and Haiyan Yu.
Virtual organization support within a grid-wide operating system. IEEE In-
ternet Computing, 12(2):20–28, February 2008.

[9] Paolo Costa, Jeff Napper, Guillaume Pierre, and Maarten van Steen. Au-
tonomous resource selection for decentralized utility computing. In Proceed-
ings of the 29th IEEE International Conference on Distributed Computing
Systems (ICDCS), Montreal, Canada, June 2009.

[10] Paolo Costa, Guillaume Pierre, Alexander Reinefeld, Thorsten Schütt, and
Maarten van Steen. Sloppy management of structured P2P services. In
Proceedings of the Third Workshop on Hot Topics in Autonomic Computing
(HotAC), June 2008.

[11] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6). RFC 2460,
December 1998.

[12] J. Domaschka, H. P. Reiser, and F. J. Hauck. Towards generic and
middleware-independent support for replicated, distributed objects. In Pro-
ceedings of the 1st workshop on Middleware-application interaction, March
2007.

[13] J. Domaschka, A. I. Schmied, H. P. Reiser, and F. J. Hauck. Revisiting de-
terministic multithreading strategies. In Proceedings of the 9th International
Workshop on Java and Components for Parallelism, Distribution and Con-
currency, March 2007.

14



[14] Jörg Domaschka, Thomas Bestfleisch, Franz J. Hauck, Hans P. Reiser, and
Rüdiger Kapitza. Multithreading strategies for replicated objects. In Pro-
ceedings of the 9th International Middleware Conference, December 2008.

[15] Jörg Domaschka, Franz J. Hauck, Hans P. Reiser, and Rüdiger Kapitza. De-
terministic multithreading for java-based replicated objects. In Proceedings
of the 18th IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS), 2006.

[16] D. Laforenza E. Carlini, M. Coppola and L. Ricci. Reducing traffic in
dht-based discovery protocols for dynamic resources. In CoreGrid ERCIM
Working Group Workshop on Grids, P2P and Service Computing in conjunc-
tion with EuroPAR 2009, 2009.

[17] Marco Fiscato, Paolo Costa, and Guillaume Pierre. On the feasibility of
decentralized grid scheduling. In Proceedings of the Workshop on Decen-
tralized Self-Management for Grids, P2P, and User Communities (Selfman),
Venice, Italy, October 2008.

[18] HBase. An open-source, distributed, column-oriented store modeled after
the Google Bigtable paper. http://hadoop.apache.org/hbase/.

[19] Mikael Hoegqvist, Seif Haridi, Nico Kruber, Alexander Reinefeld, and
Thorsten Schütt. Using global information for load balancing in DHTs. In
Proceedings of the Workshop on Decentralized Self Management for Grids,
P2P, and User Communities, October 2008.

[20] D. Johnson, C. Perkins, and J. Arkko. Mobility support in IPv6. RFC 3775,
June 2004.

[21] Avinash Lakshman, Prashant Malik, and Karthik Ranganathan. Cassandra:
A structured storage system on a P2P network. In Keynote talk at the ACM
SIGMOD international conference on Management of Data, 2008.

[22] Guillaume Pierre, Thorsten Schütt, Jörg Domaschka, and Massimo Coppola.
Highly available and scalable grid services. In Proceedings of the Third
Workshop on Dependable Distributed Data Management, March 2009.

[23] S. Plantikow, A. Reinefeld, and F. Schintke. Transactions for distributed
Wikis on structured overlays. In Proceedings of the 18th IFIP/IEEE Inter-
national Workshop on Distributed Systems: Operations and Management
(DSOM), October 2007.

15



[24] A. Reinefeld, F. Schintke, T. Schütt, and S. Haridi. A scalable, transac-
tional data store for future Internet services. In G. Tselentis, J. Domingue,
A. Galis, A. Gavras, D. Hausheer, S. Krco, V. Lotz, and T. Zahariadis, edi-
tors, Towards the Future Internet - A European Research Perspective, pages
148–159. IOS Press, 2009.

[25] Alexander Reinefeld and Thorsten Schütt. Out-of-core parallel heuristic
search with MapReduce. In Proceedings of the High-Performance Com-
puting Symposium (HPCS), June 2009.

[26] Hans P. Reiser, Franz J. Hauck, Jörg Domaschka, Rüdiger Kapitza, and
Wolfgang Schröder-Preikschat. Consistent replication of multithreaded dis-
tributed objects. In Proceedings of the 25st IEEE Symposium on Reliable
Distributed Systems (SRDS), 2006.

[27] Hans P. Reiser, Rüdiger Kapitza, Jörg Domaschka, and Franz J. Hauck.
Fault-tolerant replication based on fragmented objects. In Proceedings of
the 6th IFIP WG 6.1 International Conference on Distributed Applications
and Interoperable Systems (DAIS), June 2006.

[28] Jan Sacha, Jeff Napper, Corina Stratan, and Guillaume Pierre. Adam2: Reli-
able distribution estimation in decentralised environments. In Proceedings of
the 30th IEEE International Conference on Distributed Computing Systems
(ICDCS), June 2010.

[29] T. Schütt, A. Reinefeld, F. Schintke, and C. Hennig. Self-adaptation in large-
scale systems: A study on structured overlays across multiple datacenters.
In Proceedings of the Workshop on Architectures and Languages for Self-
Managing Distributed Systems (SELFMAN@SASO09), September 2009.

[30] T. Schütt, F. Schintke, and A. Reinefeld. Scalable Wikipedia with Erlang. In
Google Scalability Conference, June 2008.

[31] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris: Reliable transactional P2P
key/value store. In ACM SIGPLAN Erlang Workshop, September 2008.

[32] Thorsten Schütt, Alexander Reinefeld, Florian Schintke, and Marie Hoff-
mann. Gossip-based topology inference for efficient overlay mapping on
data centers. In Proceedings of the 9th IEEE International Conference on
Peer-to-Peer Computing (P2P), September 2009.

[33] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Structured
Overlay without Consistent Hashing: Empirical Results. In Proceedings

16



of the 6th Workshop on Global and Peer-to-Peer Computing (GP2PC), May
2006.

[34] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. A structured
overlay for multi-dimensional range queries. In Proceedings of the Euro-Par
conference, August 2007.

[35] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Range queries
on structured overlay networks. Computer Communications, 31(2), February
2008.

[36] Tallat M. Shafaat, Monika Moser, Ali Ghodsi, Thorsten Schütt, Seif Haridi,
and Alexander Reinefeld. Key-based consistency and availability in struc-
tured overlay networks. In Proceedings of the 3rd International ICST Con-
ference on Scalable Information Systems (INFOSCALE), June 2008.

[37] Kazuyuki Shudo, Yoshio Tanaka, and Satoshi Sekiguchi. Overlay Weaver:
An Overlay Construction Toolkit. Computer Communications, 31(2):402–
412, 2007.

[38] Ralf Steinmetz and Klaus Wehrle. Peer-to-Peer Systems and Applications
(Lecture Notes in Computer Science). Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2005.

[39] Michał Szymaniak, Guillaume Pierre, Mariana Simons-Nikolova, and
Maarten van Steen. Enabling service adaptability with versatile anycast.
Concurrency and Computation: Practice and Experience, 19(13):1837–
1863, September 2007.

[40] Willem van Duijn. A versatile anycast framework for distributed servers.
Master’s thesis, Vrije Universiteit, Amsterdam, The Netherlands, February
2008. http://www.globule.org/publi/VAFDS_master2008.
html.

[41] G. Varghese and G. M. Bhagwan, P.and Voelker. Cone: Augmenting dhts to
support distributed resource discovery. In 19th ACM Symposium on Operat-
ing Systems Principles, SOSP poster session, 2003.

[42] Werner Vogels. Eventually consistent. Communications of the ACM,
52(1):40–44, 2009.

[43] Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. Cyclon: Inex-
pensive membership management for unstructured p2p overlays. J. Network
Syst. Manage., 13(2), 2005.

17



[44] Spyros Voulgaris and Maarten van Steen. Epidemic-style management of se-
mantic overlays for content-based searching. In José C. Cunha and Pedro D.
Medeiros, editors, Euro-Par, volume 3648 of Lecture Notes in Computer
Science, pages 1143–1152. Springer, 2005.

[45] Zhou Wei, Jiang Dejun, Guillaume Pierre, Chi-Hung Chi, and Maarten van
Steen. Service-oriented data denormalization for scalable web applications.
In Proceedings of the 17th International World Wide Web Conference, Bei-
jing, China, April 2008.

[46] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. CloudTPS: Scalable trans-
actions for Web applications in the cloud. Technical Report IR-CS-053,
Vrije Universiteit, Amsterdam, The Netherlands, February 2010. http:
//www.globule.org/publi/CSTWAC_ircs53.html.

[47] XtreemOS. On the feasibility of cloud computing functionality for grid ap-
plications. Deliverable D3.2.15, December 2009.

[48] XtreemOS. Distributed xtreemos infrastructure (dixi). Deliverable D3.2.17,
March 2010.

[49] Erica Y. Yang, Brian Matthews, Amit Lakhani, Yvon Jegou, Christine
Morin, Oscar David Sanchez, Carsten Franke, Philip Robinson, Adolf Hohl,
Bernd Scheuermann, Daniel Vladusic, Haiyan Yu, An Qin, Rubao Lee,
Erich Focht, and Massimo Coppola. Virtual organization management in
XtreemOS: an overview. In Proceedings of the CoreGRID Symposium, Au-
gust 2007.

18


