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Executive summary
Workpackage 3.2 of the XtreemOS project aims at providing an infrastructure
that can support highly available and scalable grid services and applications,
such that these can be developed independently from underlying instances of the
XtreemOS operating system. When one builds a large-scale distributed service,
an important issue is to give its user a simple contact address where queries can be
sent. This is the goal of distributed servers: a distributed server is an abstraction
that allows to present a group of server processes to its clients as a single entity.
Distributed servers aim at allowing high-performance client-to-server communi-
cation, while being totally transparent to the clients. The only requirement is that
the clients support the Mobile IPv6 protocol.

This deliverable describes the internals of our distributed servers implementa-
tion. Three levels of implementations are being realized.

Low-level interface The low-level interface provides the finest level of control to
the server application programmers. However, it requires a detailed under-
standing of the internals of Mobile IPv6. We do not envisage that regular
programmers would use this interface, except in exceptional cases.

High-level interface The high-level interface provides a C++ interface that nor-
mal programmers can use to integrate distributed servers into their own
server applications. This requires changing the server application code to a
certain extent, but it is easier to use than the low-level interface.

Distributed server proxy This proxy allows to use partial functionality from the
distributed servers with applications totally unaware of distributed servers.
This is in the form of a TCP proxy that sits in front of each application node,
and does connection redirection automatically according to some redirec-
tion policy. The proxy does not require any changes to the server applica-
tion, and it also supports server applications written in any programming
language. On the other hand, a few functionalities from distributed servers
require active participation from the application, and are thus not available.
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1 Introduction
Workpackage 3.2 of the XtreemOS project aims at providing an infrastructure
that can support highly available and scalable grid services and applications,
such that these can be developed independently from underlying instances of the
XtreemOS operating system. When one builds a large-scale distributed service,
an important issue is to give its user a simple contact address where queries can be
sent. This is the goal of distributed servers: a distributed server is an abstraction
that allows to present a group of server processes to its clients as a single entity.
Distributed servers aim at allowing high-performance client-to-server communi-
cation, while being totally transparent to the clients. The only requirement is that
the clients support the Mobile IPv6 protocol.

This deliverable describes the internals of our distributed servers implementa-
tion. All code is available in the xtreemos Subversion repository under direc-
tory WP3.2/distr-server. This work has been realized at VUA.

This deliverable describes distributed servers using a bottom-up organization.
Section 2 briefly summarizes Versatile Anycast, the underlying technology that
distributed servers are using. Then, Section 3 describes the low-level implemen-
tation of distributed servers that is intended for advanced programmers only. Sec-
tion 4 describes the high-level interface that regular programmers are expected to
use. Section 5 discusses a distributed server-enabled proxy that allows one to add
partial distributed servers functionality to distributed servers-unaware programs.
Section 6 discusses kernel-level requirements of distributed servers technology.
Finally, Section 7 concludes.
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2 Essentials on Versatile Anycast
Distributed servers rely for their operation on an underlying technology called
Versatile Anycast. Although it is not the purpose of this document to fully detail
the internals of versatile anycast, we summarize its features and mechanisms here.
For an in-depth discussion and performance evaluation of versatile anycast, we
refer the reader to [9].

2.1 Features
Versatile anycast uses the Mobile IPv6 protocol [6] to present a group of physical
machines as a single entity to its clients. The group can be composed of any
number of server machines located anywhere around the world. Clients need not
know anything about the current composition of the group. They are provided
with a single, stable IPv6 address that they can use to contact the group of nodes.
Similarly, no non-standard feature is required from the home agent. The only
machines that need to use specialized software are the server nodes themselves.

Versatile anycast subsequently provides the following features:

• Make sure that all network traffic addressed to the versatile anycast address
reaches one specific node out the targeted group. This node is referred to as
the contact node.

• Allow a group of nodes to change its contact node. This may happen, for
example, upon a failure of the current contact node.

• Allow the contact node to handoff network traffic issued by one of its clients
to another server node from the group. This operation may be realized upon
the initiation of a client connection, or at any moment later on. Commu-
nication is not tunnelled through the contact node, but exploits the route
optimization mechanism from MIPv6 to provide a direct network path be-
tween the client and its current server node. Handoffs are totally transparent
to the client-side application.

• It is not sufficient to handoff the flow of IP packets from the client to one
specific server node. To support mid-connection handoff, one must be able
to extract the latest state of the TCP socket at the server donor side, and
transfer it to the server acceptor side so that the TCP connection is not dis-
turbed. Versatile anycast relies on the TCPCP Linux module for this [1].

• In the event that a server node would crash, it is possible for another node to
recover the connections that the crashed machine had with its clients. This
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operation is again transparent to the client application; the only consequence
from the client side is a short interruption of traffic that corresponds to the
necessary delay for the backup node to detect the failure of the crashed
server node.

This last feature is not discussed in [9], as we developed it after the submission
of that article. We therefore discuss it in more detail next.

2.2 Connection recovery upon node failure
To support connection recovery upon a server node failures, several techniques
must be used together. First, a number of preparatory operations must be real-
ized prior to node failure. Each node must have one designated backup, which
must monitor its availability to decide when it should recover connections. It is
also necessary that each node informs its backup each time it opens or closes a
connection. To allow for TCP state reconstruction after failure, the backup node
must be sent a copy of the state of the TCP connections to recover as well as the
MIPv6-level biding update sequence number. The TPC state is very small (90
bytes), and need not be maintained up-to-date frequently. Mirroring the state of
an open TCP socket may be realized for example once every few megabytes of
transferred data to the client.

Once a node failure is detected, the backup node can recover the connections
from the failed node as follows:

• Create a new frozen socket based on the latest state received from the failed
node.

• If the failed node was having the role of contact node: contact the home
agent, and take-over the IP address of the failed node (note that this requires
that the failed node shared its IPsec security association [5] with its backup
prior to the failure).

• Contact the client, and initiate an IP handoff toward the backup node.

• We must now recover the current state of the TCP connection. To do so, the
backup node must open a raw socket and apply the following procedure:

– Send a set of empty TCP ACK packets to the client based on the last
known state. Only one such packet is really necessary, but one should
send a few to account for possible packet drops in the network.

– Wait for one ACK packet from the client. According to the TCP spec-
ification, a client receiving an old (but valid) ACK packet must reply
with an up-to-date ACK.
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– From the received ACK packets, one can derive the current TCP se-
quence numbers.

– Once this is done, the raw socket can be closed as it is not necessary
any more.

• The backup can now update its frozen socket with the new TCP sequence
numbers derived from the client’s ACK, and adjust its streaming offsets
accordingly.

• The backup can inform the application of the current offset within the con-
nection. For example, a connection may have sent 12077 bytes of payload
and received 1021 bytes of payload since the connection was created. It
is the responsibility of the server-side application to interpret these offsets
to resume the failed session. We expect that this will be possible in sev-
eral cases. At worst, the application can cleanly reset the connection to the
client, and expect that the client will re-issue its invocation.

• The backup can now re-activate the socket, and use it normally.
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3 Low-Level API
The low-level API allows one to manipulate versatile anycast features directly. It
provides two sets of functions: the first one handles the management of MIPv6
addresses and their registration with the MIPv6 home agent, while the second one
handles handoffs.

Application programmers can use these functions to create a Versatile Any-
cast based distributed server. However, this API does not provide any support for
sharing IPsec security associations, managing the membership of the distributed
server, or facilitating TCP connection handoffs. In particular, it expects the pro-
grammer to interleave versatile anycast and TCPCP calls correctly as described
in [9].

3.1 Address management functions
The first necessary operation at the startup of a distributed server is to create a
shared IPv6 address which can be given out to the clients as a contact address.
Each node from the distributed server must recognize this address as its own,
and attach it to its network interface so that the server-side application can bind
sockets to it. Secondly, a MIPv6 binding cache entry must be created to map the
IPv6 address of each replica to that of the whole distributed server. These two
actions are accomplished using the following function:

mip6_addr_passive(struct in6_addr *global_address,
struct in6_addr *local_address,
struct in6_addr *current_contact_node);

The specified global_address will be used by clients to connect to the
system, while the local_address will be used when a client is handed off to
this node. The address of the current contact node is required to perform handoffs,
as internal messages necessary for the handoff need to be forwarded by the contact
node.

This operation is entirely internal to each node of the distributed server. This
means that each node is ready to accept traffic targeted to the distributed server,
but network routes are not setup yet for read distributed server operation.

One node from the distributed server must now take the role of contact node,
which means that it will receive the first packet of each newly created connection.
The contact node must register itself to the home agent which controls the versatile
anycast address. This registration is realized using the function:

mip6_addr_active(struct in6_addr *global_address,
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struct in6_addr *local_address_for_handoffs,
struct in6_addr *local_address_as_contact_node,
struct in6_addr *home_agent);

The distinction between both local addresses is not absolutely necessary: the
same local address can be used as both the local address of the contact node of
the distributed server, and the local address of the same node in its role of a po-
tential recipient of a handoff. Distinguishing these two addresses however allows
to optimize the connection establishment procedure.

3.2 Handoff functions
A second set of functions provides means to execute an IPv6 handoff between
two replicas. When a donor node from a distributed server initiates a handoff to
an acceptor node from the same distributed server, the following operations must
be realized:

First, the binding updates sent to the client contain a sequence number. This
means that the donor needs to request the sequence number of the most recent
binding update from its local MIPv6 daemon:

mip6_handoff_mark(struct in6_addr *client_address,
struct in6_addr *global_address,
struct in6_addr *local_address_for_handoffs,
struct in6_addr *acceptor_address);

This sequence number must then be sent to the acceptor. The acceptor can then
start the handoff procedure. This procedure involves a so-called return routability
check defined in the MIPv6 specification: the acceptor sends a “CoTI” message
directly to the client, and a “HoTI” message to the current contact node, as spec-
ified with the mip6_addr_passive function1. The latter then forwards the
“HoTI” message to the home agent, so it can be sent to the client. Upon receipt of
both messages, the client replies as normal, sending the “CoT” directly, while the
“HoT” is forwarded by the home agent and contact node. After the reconstruc-
tion of the binding key, the acceptor sends a binding update message to the client
using the sequence number sent by the donor. These actions are executed by the
acceptor using the function:

1HoTI, CoTI, HoT and CoT messages are defined by Mobile IPv6 [6]. They implement the
so-called “return routability check”, which allows the client node to verify that a proposed route
optimization leads to the same server node as when using the current route.
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mip6_handoff_start(struct in6_addr *client_address,
struct in6_addr *global_address,
struct in6_addr *local_address_for_handoffs,
struct in6_addr *donor_address,
int sequence_number);

A possible optimization is, instead of executing both the return routability
and binding update in sequence, to delay the latter. This allows one to execute
the return routability in advance, while the donor is still in control of the client,
allowing it to first finish up and empty its sending buffers. The acceptor then
first executes a function that executes the return routability, after which a second
function is executed for sending the binding update to the client. This optimization
reduces the total handoff time because less time is used on procedures after the
donor has stopped serving the client, allowing the acceptor to take over the client
faster. Experiments show that the total handoff time can be reduced by roughly
one third [9]. However, it requires extensive synchronization between the donor
and acceptor, making it harder to use.

After the handoff has taken place, the donor can close its connection to the
client, which is not needed any more.

As the binding between the global and local distributed server addresses at the
client side is realized on a per-address basis, closing the connection won’t affect
the binding. In case the client closes its connection to the server and opens another
one, it will be served by the last node it was bound to (provided that the binding
has not expired). For some applications, this behavior may be undesirable. The
server application can then use the following function to clear the binding at the
client side after closing the connection:

mip6_handoff_clear(client_address, contact_handle);

Upon return, the client’s binding will be deleted so subsequent traffic will be
sent to the contact node again.

3.3 TCP handoff
The procedure presented above only hands off the flow of IP packets. In case the
application is connected to the client using TCP, then extra steps must be taken
to extract and transfer the state of the TCP connection between the donor and the
receiver. These steps are discussed at length in [9], so we only briefly summarize
them here.

1. At the donor: freeze the socket, extract its state from the kernel;
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2. Send the TCP state to the acceptor;

3. At the acceptor: re-create a socket from the received state, keep it frozen;

4. At the acceptor: initiate the return-routability procedure and the binding
update;

5. At the acceptor: initiate the binding update to the client;

6. At the acceptor: send an acknowledgement to the donor to notify that the
handoff was successful;

7. At the acceptor: re-activate the socket;

8. At the donor: close the frozen socket.

3.4 Test cases
As part of our dissemination activities, we built and videotaped a demonstration
of versatile anycast based on the low-level interface. The demo showcases a group
of two servers in different network segments using versatile anycast, and that can
stream video over HTTP. These servers are queried by one client, which is using
an unmodified standard video client to view the video. The demonstration videos
are available online at [3], and are organized as follows:

1. Presentation of the experiment: presentation of the testbed and the stream-
ing video server application.

2. Simple TCP handoff: the client connection is handed-off between the two
servers once every 15 seconds. The only way to make the handoff visible at
the client side was to organize servers such that one would deliver a colorful
movie while the other would deliver a monochrome version of the same
movie.

3. Handoffs can take place at any moment: there is no need for complex
preparation procedures before a handoff can take place. Here, handoffs are
manually triggered by the operator.

4. Connection recovery upon server crash: we simulate the crash of one
server by physically disconnecting its network cable. From the client side,
we notice a 1-second interruption in the movie, then the streaming resumes
as normal.
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5. Connection recovery with client-side buffering: in this particular appli-
cation, one can even hide the 1-second streaming interruption due to a node
failure by using standard client-side data buffering techniques.
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4 High-Level API
The low-level API presented in Section 3 provides all the necessary functionality
to build a distributed server application. However, doing so is quite difficult, and
many important details must be handled by the application programmer: request
IPv6 addresses from the home agent, manage the membership of the distributed
server, monitor each node’s availability, select a contact node, share the IPsec
security association with potential contact node backups, define policies for de-
ciding which connection should be handoff to which server node, implement the
actual handoff procedure, etc. Many of these requirements are in fact common to
all distributed server applications. We therefore built a higher-level interface that
implements these functionalities, and presents a simpler API to the programmer.
The high-level API is implemented in C++.

Note that this API is tentative, and likely to be changed in future versions
according to discussions with WP3.1.

4.1 Features
The high-level API allows one to define the configuration of a distributed server
thanks to a simple configuration file. This file contains information about the
global address of the distributed server, the address of the home agent, the iden-
tity of the contact node and its authorized backups, and various other internal
parameters. A programmer can then build a distributed server using the following
functionalities:

• All distributed server functionality is available through a GeckoFramework
object that each node of the distributed server must instantiate. Upon instan-
tiation, this object creates a background thread which is used to handle the
communication and handoff between the distributed server nodes.

• In the simplest instance of distributed servers, one can simply define a hand-
off policy which is invoked each time a new client contacts the distributed
server. The current implementation only contains a “random” policy, but
in future versions we will provide more policies to choose from, such as a
round-robin policy, or more advanced ones such as a proximity-based pol-
icy which could redirect a client to the closest distributed server node. An
application programmer can also implement custom policies by simply de-
riving a base class and implementing a selection method.

• The distributed server framework provides a “socket” class which is a wrap-
per around a normal TCP socket. This is necessary to provide a simple
handoff interface, and programmers are requested to use this wrapper rather
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than the actual socket. In particular, this class contains a handoff method
which allows to explicitly handoff a connection (either upon connection es-
tablishment or while data are being exchanged) to another member of the
distributed server.

The current framework focuses on the most essential functionalities. Addi-
tional functionalities may be added in the future, according to actual needs and
available workforce:

• Dynamically add/remove nodes to/from a distributed server

• Proactively detect node failures, and recover the failed connections

• Support recovery upon failure of the contact node

4.2 API

4.2.1 GeckoFramework

The main class of the high-level API is GeckoFramework. An object of this
class must be instantiated by every member node of the distributed server.

class GeckoFramework {
public:
GeckoFramework (struct in6_addr *local_address,

char *config_filename,
char *network_interface);

virtual ~GeckoFramework();
int SetPolicy (GeckoPolicy *policy);
int GetServerSocket (GeckoServerSocket **serversock);
int JoinReplicaNetwork ();
int LeaveReplicaNetwork();

};

Using this object, a programmer can now carry two more operations: (op-
tionally) setup a redirection policy, and create a server socket to receive client
connections. Note that, if a redirection policy is defined, the redirection will be
realized automatically by the background thread, transparently to the application
running at that node.
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4.2.2 GeckoPolicy

A redirection policy is implemented by deriving the GeckoPolicy base class.

class GeckoPolicy {
public:
GeckoPolicy (GeckoFramework *framework);
virtual ~GeckoPolicy ();
virtual int SelectTarget (GeckoSocket *client,

struct in6_addr *target);
virtual void NotifyFailedHandoff(struct int6_addr *target);

};

To instantiate a new policy, one must overload the SelectTarget()method,
which fills in the target variable with the address where the handoff should
take place, given the identity of the client socket. One must also overload the
NotifyFailedHandoff, which is called by the framework in the case a hand-
off failed, and which gives the redirection policy an opportunity to take note the
failure and remove the concerned node from potential redirection targets.

The current implementation contains a single policy, which selects a target
randomly among all server nodes.

4.2.3 GeckoServerSocket

A server socket object simply allows the application to call an accept()method,
which blocks the caller until a client connection is received. Note again that, if a
redirection policy is defined, only the server node that should actually process the
connection will accept a new socket; the operation is transparent to the applica-
tion running at the contact node (unless the contact node is selected to process the
connection, of course).

class GeckoServerSocket {
GeckoServerSocket (GeckoFramework *framework);
virtual ~GeckoServerSocket();
int Close ();
int Accept (GeckoSocket **client_socket);

};

Upon an established connection, the application receives a GeckoSocket
object that can be used to communicate with the client. This can happen in differ-
ent situations:

• When a client initiates a new connection, and the redirection policy decides
that the contact node should handle the connection;
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• When a client initiates a new connection, after being handed-off to another
server node;

• During an existing connection, after a server node hand-off the connection
to another node.

4.2.4 GeckoSocket

class GeckoSocket {
GeckoSocket (GeckoFramework *framework);
virtual ~GeckoSocket ();
int Bind (int sd);
int Connect (const struct in6_addr *target_address,

int target_port);
int SetNonBlocking();
int SetBlocking ();
bool IsBlocking ();
ssize_t Write (const void *buf, size_t nbytes);
ssize_t Read (void *buf, size_t nbytes);
void Close ();
void GetPeerName (struct sockaddr_in6 *in);
int Handoff (bool nonblocking);
int Handoff (struct in6_addr *target,

bool nonblocking);
};

The GeckoSocket contains the expected methods to read/write data, set into
blocking or non-blocking mode, etc. Additionally, it contains two extra methods
Handoff. The first one will handoff the connection according to the current redi-
rection policy, while the other allows to programmer to specify a handoff target
explicitly.

The nonblocking parameter allows the programmer to decide whether the
application should wait until handoff is complete, or if the handoff should take
place in the background. In the second case, a handoff failure would lead to an
automatic selection of another handoff target according to the local redirection
policy.

4.3 Test cases
Although the high-level API implementation is still relatively experimental, it is
already possible to implement applications that use it. For testing purpose, we
built a tiny “echo” server application, which automatically hands off connections
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using the “random” policy upon connection establishment. It also hands off the
connection again each time it reads a ’H’ character in its socket input. We suc-
cessfully deployed this application in the MIPv6 testbed at VUA, and also within
one server cluster from Grid’5000 in Rennes. We could not deploy this applica-
tion over more locations from Grid’5000 because IPv6 connectivity is not (yet)
available between Grid’5000 sites.
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5 Distributed Server Proxy
Programmers can easily integrate distributed server functionality into their server
applications using the high-level API presented in Section 4. However, using this
API can also have drawbacks. First, it is currently available only for C++ pro-
grams. Programs written, for example, in Java currently cannot benefit from dis-
tributed servers functionality. Also, although the high-level API should be fairly
easy to understand and to use, it does require that programmers adapt the source
code of their applications.

Consequently, we built an even higher-level version of distributed server tech-
nology, in the form of a distributed server-enabled proxy. This implementation
provides functionality limited to handoff at connection establishment time accord-
ing to one of a few pre-defined policies. No mid-connection handoff nor connec-
tion recovery upon failure is supported. On the other hand, this implementation
does not impose any change whatsoever to a pre-existing server application. It
also works with programs written in any language.

Application
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Figure 1: Design of the Distributed Server Proxy

The design of the Distributed Server Proxy as shown in Figure 1 was inspired
by Stunnel, a proxy that “allows you to secure non-SSL aware daemons and pro-
tocols (like POP, IMAP, LDAP, etc) by having Stunnel provide the encryption,
requiring no changes to the daemon’s code [8].” One instance of the proxy sits in
front of each server application. The proxies collectively implement distributed
server functionality: one of them takes the role of contact node, and hands off in-
coming connections to other proxies (or possibly itself), according to a pre-defined
redirection policy. The acceptor proxy can then open a regular TCP connection
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to its local application, and forward all client traffic between the server applica-
tion and the client. This way, connections can be handed off between distributed
server-unaware server nodes.

The Distributed Server proxy has an extremely simple command-line inter-
face:

geckoproxy -g <config_file> -a <local_application_port_number>

The config_file parameter specifies a configuration file for the distributed
server, as discussed in section 4. The local_application_port_number
parameter specifies the port number that the local distributed server-unaware ap-
plication is using.

Note that this implementation reduces the functionality available thee the ap-
plication: it does not allow to initiate content-aware handoffs, mid-connection
handoffs, nor connection recovery upon node failure.
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6 Operating System Requirements
Distributed servers require special support from the MIPv6 implementation run-
ning on the replica nodes. The current system relies on the MIPv6 version from [7].
This implementation puts only the absolutely necessary infrastructural support in
the kernel, moving most functionality to a daemon running in user space. The dae-
mon is then responsible for installing and removing packet translation mappings
required to handle the special MIPv6 routing headers. This MIPv6 implementa-
tion therefore consists of two parts: first, a number of patches add the minimum
number of necessary hooks into the Linux kernel. The largest part of the imple-
mentation resides in a user-level MIPv6 daemon, which in turn makes use of the
kernel hooks. This kernel patch is however tightly linked to a specific version
of the kernel. The latest available version provides hooks for the Linux-2.6.16
kernel. Newer kernel versions are not supported for the moment.

Another pitfall of the current MIPv6 implementation is that it does not support
IPsec security associations to prevent hostile address takeovers by unauthorized
parties [2].

Distributed servers also need to be able to freeze, unfreeze, extract and in-
ject TCP socket states from/into the kernel. For this, we use the TCPCP Linux
extension, that we modified to support IPv6 connections. TCPCP only runs on
Linux-2.6.11, which is the kernel version we are currently using in our experi-
ments.

Clearly, being stuck with the old linux-2.6.11 kernel is not a desirable situa-
tion. One partial solution could be to use TCPCP2, a fork from TCPCP which na-
tively supports IPv6 sockets and the Linux-2.6.15 kernel [10]. Similarly, it might
be wise to change our basic MIPv6 implementation for example to FMIPv6, which
supports the current Linux-2.6.23 kernel [4].

19



7 Conclusion
We believe that distributed servers have the potential to provide XtreemOS with a
unique feature not found in any other system: allow to make the internal composi-
tion of a distributed service transparent to its clients, even if the service is deployed
across multiple locations. The handoff mechanisms provides high-performance
client-to-server communication, and fine-grained control of the redirection to the
servers themselves.

Next to the powerful but cumbersome low-level interface of distributed servers,
we have built a high-level interface that allows programmers to easily integrate
distributed server features into their services. We also built a proxy that allows dis-
tributed server-unaware programs to benefit from basic distributed servers func-
tionality.

To allow distributed servers to reach their full potential within XtreemOS, it is
now time to work in collaboration with other partners and integrate this technol-
ogy with other XtreemOS components:

Within WP3.2 Another innovative feature developed within WP3.2 is virtual
nodes which, as described in deliverable D3.2.5, offer applications with au-
tomatic replication for fault-tolerance. The features from distributed servers
and virtual nodes nicely complement each other to provide transparent fault-
tolerant Grid applications: virtual nodes make sure that redundant processes
are always ready to takeover each other’s tasks in a highly-available process
group, while distributed servers may allow one to completely hide node fail-
ures and the subsequent request redirection to the clients. This integration
must however be considered as a difficult research topic, and will require
significant research and development efforts.

With WP3.1 Now that functionality from distributed servers is getting stabilized,
it is time to interact with WP3.1 to define an API consistent with the rest
of XtreemOS. We plan to use the API presented in Section 4 as a starting
point, and to refine it to match the common coding style of XtreemOS.

With WP2.1 and WP2.2 Distributed servers create requirements with respect to
the Linux kernel, as discussed in Section 6. Clearly, the current requirement
of a (modified) 2.6.11 Linux kernel is not a viable option. We plan to work
in collaboration with WP2.2 to define reasonable targets, and to port the
existing system to newer kernels.

With WP2.3 WP2.3 works on the XtreemOS version for mobile devices. As
such, this work package has expressed interest in support of mobile IPv6
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and distributed servers. We plan to discuss extensively with WP2.3, in par-
ticular to define which implementation of MIPv6 on Linux should be used
by our two workpackages.

With WP3.3 and WP3.5 WP3.3 and WP3.5 are two potential users of distributed
servers and virtual nodes technology, to build highly available job submis-
sion and security services. We however believe that it is still too early to di-
rectly integrate virtual node and distributed servers technology from WP3.2
with these services. Such integration is planned in the longer term.
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