
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Reproducible evaluation of a service/resource discovery system
D3.2.8

Due date of deliverable: November 30th, 2008
Actual submission date: January 13th,2009

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.2
Task number: T3.2.3

Responsible institution: CNR/ISTI
Editor & and editor’s address: Massimo Coppola

CNR/ISTI
Via G. Moruzzi 1

56124 PISA
Italy

Version 1.0 / Last edited by Massimo Coppola / January 13th, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 11/12/08 Massimo Coppola, Emanuele
Carlini

CNR/ISTI Initial outline

0.3 20/12/08 Massimo Coppola, Guillaume
Pierre, Jeff Napper

CNR/ISTI,
VUA

Added VUA contribution

0.9 12/01/09 Massimo Coppola, Laura
Ricci, Patrizio Dazzi,
Emanuele Carlini, Susanna
Martinelli

CNR/ISTI Final version for internal review

1.0 20/01/09 Massimo Coppola CNR/ISTI Minor corrections after internal review

Reviewers:
Jan Stender (ZIB), Samuel Kortas (EDF)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.2.3 Design and implementation of a service/resource discovery

system
CNR∗, VUA

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary

This deliverable presents the current state Service/Resource Discovery System
(SRDS), and its evaluation in terms of performance, reliability, robustness. The
SRDS will offer to applications and other components of XtreemOS the capability
of searching for, and selecting, services and resources.

In the context of XtreemOS, a reproducible evaluation encompasses diverse
aspects, namely (1) evaluation of performance and scalability, (2) reliability of the
functional behaviour, and (3) deployment robustness within complex, distributed
software system. This deliverable covers those three aspects, also building on
top of the performance ans scalability evaluation reported in previous deliverable
D3.2.4 [14].

The first chapter surveys the SRDS design and SW architecture, whose main
component modules are the Resource Selection Service (RSS, realized by the VUA
team) and the Application Directory Service (ADS, realized by the CNR team).
The SRDS SW architecture is distributed as three different packages of the XtreemOS
distribution. We report the current implementation status of those modules, the
functionalities they provide in the first public release of XtreemOS, we discuss
recent choices made in the development, as well as the procedures followed for
testing and packaging. This addresses point (3), motivating and putting in context
the following chapters.

The second chapter addresses point (1) above, by reporting additional perfor-
mance evaluations for ADS and RSS to validate development choices made after
M18. A full evaluation of both components at that time had been already per-
formed over diverse platforms (simulators, clusters, Grid5000, DAS, PlanetLab),
and was reported in deliverable D3.2.4. We update those results by comparing on a
large Grid the performance and scalability of ADS when using the Overlay Weaver
Distributed Hash Table (instead of the Bamboo one), and by comparing the RSS
scalability against a purely DHT-based resource discovery system.

The third chapter describes the testing methodology employed, which mixes
Black-Box testing and Unit Testing. Black-Box tests can be easily employed by
end-users, in automated package testing and also in vivo, on a running distributed
system, while the Unit test suite is mainly useful to developers, and helps track-
ing functional bugs resulting from changes in the implementation of ADS internal
modules. It follows from point (2) above that managing the development and de-
ployment complexity, and certifying functional behaviour of code is an essential
feature for a Grid-distributed OS.

Summing up, this deliverable shows that the SRDS prototype performs consis-
tently over diverse platforms, from the performance and functional viewpoints, and
it explains how to exploit the testing mechanisms to ensure these properties when
modifying and deploying the SRDS code.

Glossary

ADS Application Directory Service

AEM Application Execution Manage-
ment

API Application Programming Interface

DAS-3 Distributed ASCI Supercomputer

DHT Distributed Hash Table

DMS Data Management Services

HTTP HyperText Transfer Protocol

ID Identifier

IML Information Management Layer

IP Internet Protocol

JSDL Job Submission Description Lan-
guage

JSON JavaScript Object Notation

libDB Berkeley Database library

M18 Month 18 (December 2007)

M24 Month 24 (June 2008)

M30 Month 30 (December 2008)

MAPI Module-specific API

NodeID Node Identifier

OW Overlay Weaver

OS Operating System

P2P Peer-To-Peer

QoS Quality of Service

QP Query & Provide

RSS Resource Selection Service

SRDS Service/Resource Discovery Sys-
tem

SSL Secure Sockets Layer

SW Software

TCP/IP Transmission Control Protocol
/ Internet Protocol

TCP Transmission Control Protocol

TTL Time-To-Live

UUID Universally Unique Identifier

VO Virtual Organization

WP Work Package

XML eXtensible Markup Language

2/38

Contents

Glossary 2

1 Service/Resource Discovery System Design 5
1.1 Document Structure . 6
1.2 Service/Resource Discovery System Design 7
1.3 Application Directory Service (ADS) 9

1.3.1 Development Status . 10
1.4 The DHT layer . 12

1.4.1 Overlay Weaver . 13
1.5 Resource Selection Service (RSS) 14
1.6 Development activity up to M30 16

1.6.1 Design of the Integration with Overlay Weaver 17
1.6.2 Testing and Packaging with XtreemOS 20

2 Performance Evaluation 23
2.1 DHT Layer Evaluation – Bamboo vs OverlayWeaver 23
2.2 RSS evaluation with respect to a DHT-based approach. 27

3 Functionality Evaluation 30
3.1 Black-box Testing . 30
3.2 Unit Testing . 32

4 Conclusions 35

Bibliography 36

3/38

IST-033576 D3.2.8

XtreemOS–Integrated Project 4/38

Chapter 1

Service/Resource Discovery
System Design

This deliverable summarizes current and previous results concerning the evaluation
of the discovery services for resources and services which belong to the WP3.2 of
XtreemOS. Reproducible evaluation of a service within XtreemOS encompasses
several aspects of its implementations

1. performance should be predictable and acceptable with larger and larger plat-
form sizes and communication overheads, in order allow execution on future
Grids

2. functionality should be easy to test and modify, to allow integration of more
and more complex subsystems into an interoperable set of operating system
services

3. integration with other system components should be standardized and easy
to perform, to allow a robust set of services to be developed, and to ease
system deployment for the end-user.

Point 1 above is the obvious first target in designing high availability systems, and
for the Service/Resource Discovery System (SRDS) it has been deeply addressed
already in the design and early development stages, as documented by the large
amount of tests over simulators, clusters and large scale Grids reported in previous
deliverable D3.2.4 [14]. These tests already proved that the single components of
the SRDS provide the expected performance level to XtreemOS systems and do
scale well, thus being of practical use on even larger platforms.

The same deliverable [14] also discussed the properties of modularity and flex-
ibility of the SRDS design that are needed to meet point 2 above, and to bootstrap
future open source development of the system.

These results are only briefly recalled and summarized in present document,
which focuses instead on the other properties that are implied by “reproducible”.

5/38

IST-033576 D3.2.8

As it was evidenced during XtreemOS system development, especially in the sys-
tem integration and debugging phase around M24, any component of XtreemOS
that is capable of amazing performances in isolation, but that is buggy, hard to
build, deploy or configure, it is almost useless for the system, and cannot be prac-
tically used and evaluated.

Therefore, this deliverable reports additional results which concern perfor-
mance aspects only if previously untested, it surveys functionality testing as a tool
to ensure robustness and reproducible functional behaviour, and in addition it cov-
ers functionalities which simplify the SRDS development, testing and repackaging
activities.

We discuss choices we made during the SRDS development in order to speed
up system integration, or, conversely, to prepare some changes and upgrades in the
system architecture that will soon be needed to ensure reproducibility of system
behaviour in the real world, according to all the three meanings we listed.

1.1 Document Structure

The document presents the design of the SRDS starting with its overall organiza-
tion.

Chapter 1 summarizes the status of the SRDS prototype at M30, discussing the
development roadmap and the open research perspectives.

Section 1.2 discusses SRDS design requirements, goals and functionalities
based on the decomposition of the SRDS into two cooperating services, the Re-
source Selection Service (RSS) and the Application Directory Service (ADS), as
they have been implemented in the first public release of XtreemOS.

Up to now the SRDS satisfies the requirements gathered from WP3.3 ([7] re-
lated to the Application Execution Management) and WP3.4 ([8] concerning the
Data Management Services and the Grid-enabled XtreemOS File System) as main
test cases in the specification design, and takes into account the overall VO Man-
agement and Security infrastructure [9, 5, 6] designed by WP2.1 and WP3.5.

Section 1.3 discusses the specific architecture of the ADS component of the
SRDS, whose main layers are the client-oriented interface, a middle-tier provid-
ing query resolution algorithms and information encoding, and a low-end tier level
which interfaces to one or more DHT implementation libraries. Section 1.4 dis-
cusses the issues confronted in implementing the DHT layer, and motivates the
choice to switch the default DHT library from Bamboo to OverlayWeaver. Section
1.5 recaps the basic principles and implementation choices of the Resource Se-
lection Service, the module providing the first selection of nodes during resource
discovery queries. Section 1.6 summarizes development up to M30, in particular
the testing activity and the introduction of automated packaging and testing, also
in order to improve system stability.

Chapter 2 reports new performance results which aim at confirming the good
scalability and performance results already reported in deliverable D3.2.4 [14], by

XtreemOS–Integrated Project 6/38

D3.2.8 IST-033576

extensive measurements on simulators, cluster and Grid platforms. The chapter
focuses first on the comparison between the Bamboo DHT and the OverlayWeaver
DHT, to verify the assumption that the SRDS system can adapt to different DHT
implementation layers with no critical loss of performance and reliability. Then it
moves on to a comparison between the RSS and a DHT-based support for range
queries, showing that for typical resource location queries over a large platform,
the RSS leads to a more balanced overhead and avoids critical load spots.

Chapter 3 surveys the mechanism adopted to provide functional verification of
the SRDS, to ensure ease of checking and enhance SRDS reliability when inte-
grated within a complex OS like XtreemOS. We employed both Black-Box tests,
and Unit tests. Black Box tests can be easily run (even by an end user) in order to
verify that the SRDS behaviour satisfies the interfaces requirements defined for a
specific client module. Unit testing is adopted for the internal SRDS modules, in
order to ensure a safer and more modular development activity.

Chapter 4 summarizes the results presented so far and draws conclusions.

1.2 Service/Resource Discovery System Design

The Service/Resource Discovery System has to provide higly scalable service and
resource location functionalities (including Distributed Directory Services as a spe-
cial case) to a wide range of different clients. We define as potential clients all
other modules of XtreemOS as well as XtreemOS-aware applications. The set of
clients is thus heterogeneous and expandable with time. Flexibility in defining
client interfaces and protocols, different query semantics and resolution algorithms
is a concrete need. The basic requirements of the SRDS can be summarized as
follows.

• The SRDS continuously receives many different kind of data, both static and
dynamically variable, associated to nodes, keys, applications and services.

• Different clients may require different communication frameworks, and will
most probably rely on different communication protocols (single or multiple
phase, blocking, asynchronous or multithreaded interaction) and data mar-
shaling conventions.

• In order to provide organized information to other XtreemOS components,
the SRDS has to answer queries with diverse semantics, ranging from simple
key-based queries to range-based queries over dynamic attributes (i.e. values
that are dynamically variable at run-time).

• SRDS has to provide a Quality of Service level that is customizable accord-
ing to the needs of each SRDS client in several aspects. We cite as examples

– the performance level, which must scale with the platform, and is in a
tradeoff with the complexity of resolving information queries,

7/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

– the reliability service level (e.g. fault tolerance of the distributed stor-
age) that is usually related to the degree of replication of information,

– additional properties of the service like transaction support, which are
needed by specific clients and supported by specific subsystems.

All these functionalities rely on efficient, scalable and reliable ways to gather
and organize information concerning the status of resources, services and appli-
cations, which are provided by different distributed mechanisms, some of them
being of general availability, other ones being state-of-the-art prototypes in P2P
technology.

The set of requirements, more thoroughly explained in [14], led to design a
composite solution whose software architecture is shown in Figure 1.1, and based
on the following design principles.

• Different implementation issues (that is interfacing, providing security and
authentication, providing query functionality) have been decoupled into sep-
arate subsystems and layers, enhancing modularity and easing future inte-
gration with advanced features of XtreemOS.

• Different clients are supported by separate interfaces in the Facade layer,
allowing easier customization of interaction protocols, stricter detection and
better handling of errors. To avoid proliferation of interfaces and reduce
low-level issues in coding them, most of the clients should exploit a common
framework, e.g. DIXI[3], to access the SRDS.

• Different implementations of the information management layer (e.g. differ-
ent DHT libraries) can be used within the same system in order to provide a
differentiated QoS offer to the clients. Thus the SRDS architecture (1) has
to be flexible w.r.t. the DHT adopted, decoupling the query resolution algo-
rithms from the information management subsystems, (2) has to potentially
support multiple overlay network over the same set of nodes and (3) should
provide a simple API to tune specific DHTs to the user need, e.g. by se-
lecting different routing algorithms or replication degrees before setting up
a new overlay.

• As a special case of previous paragraph, and also as a main task of the SRDS,
the performance-critical problem of resource location for Application Exe-
cution has to be solved providing high scalability. This particular problem
has been dealt with by integrating two different P2P overlays providing com-
plementary features, the RSS and ADS modules, that act as a “machete” and
“bistoury” in extracting the answer from the huge amount of information de-
scribing the nodes of a Grid.

Resource queries in XtreemOS involve static and dinamic attributes (fixed
properties and running parameters of the computing resources) over very large

XtreemOS–Integrated Project 8/38

D3.2.8 IST-033576

Figure 1.1: SRDS architecture; detail of the ADS architecture and its interaction
with RSS.

Grid platforms, and are typically in the form of multidimensional queries where
some or all the parameters are value ranges.

No distributed network exists today that can answer this kind of queries ef-
ficiently and in a fully scalable way. Thus Resource queries are executed as a
two-phase information selection process, in which two modules cooperate exploit-
ing their relative strengths. The Resource Selection Service (RSS) developed by
VUA, described in section 1.5, is capable of solving multiattribute range queries
over static attributes, returning a set of candidates much smaller than the size of
the resource set. A short list of resources satisfying the static part of the initial
query is then handed to a DHT-based module of the Application Directory Service
(ADS), which is much more flexible in the kind of information dealt with, and can
efficiently compute the query answer thanks to the reduced problem size.

1.3 Application Directory Service (ADS)

The ADS internal architecture is depicted in figure 1.1. It constitutes the largest
part of the SRDS prototype. The current implementation of the ADS provides in-
terfaces for resource location within a VO (the Application Execution Management
queries them) and two Directory Services interfaces, the Job Directory Service,
which manages information about running jobs on an XtreemOS Grid, and the
Data Management Services interface, which manages information about the server
nodes of the XtreemFS file system.

9/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

Communication Frameworks Of those interfaces, the AEM and the JDS ones
are exported through the DIXI service communication framework, and are cur-
rently in use in the public XtreemOS release. The DMS interface is provided over
HTTP by a mini server supporting asynchronous and session based communica-
tion over a connectionless link. Ad additional RMI interface is provided in all
cases that can be used in local to perform tests on the ADS module. Integration
with DIXI has initially required a huge effort in debugging, with latest releases
of the framework being more and more stable. Currently, DIXI is used within
the ADS in a single-thread mode, with the switch to concurrently receiving client
requests already planned, as soon as newer versions of the DIXI framework will
enable multi-threaded services.

Communication and Marhsaling Protocols The JDS DIXI interfaces exploits
the standard passing conventions of the DIXI framework; the AEM interfaces em-
ploys DIXI to exchange messages encoded as XML dialects (JSDL [2], GLUE [1]).
The DMS interface employ a custom defined protocol based on JSON [11] mar-
shaling rules.

Query Engines Current implementation of the ADS already provides a few query
engines: to fetch dynamic attributes of computational resources, a Directory Ser-
vice engine allowing reverse querying over multiattribute items, which is used by
the JDS and DMS subsystems.

Information layer As designed in [14], the Information Layer decouples query
processing from the actual P2P approach exploited, which is presented through
a generic DHT API. This extra software level, which was meant to help mixing
different overlay solutions, has also been already exploited to prepare the migration
from the default Bamboo DHT to the OverlayWeaver toolbox, as reported in the
next section 1.4.

1.3.1 Development Status

The following points were marked as future work in deliverable 3.2.4 [14, page
63].

• Support for simple and complex queries. Currently the ADS supports com-
plex query defined by the JSDL language.

• Indexing of distributed resources. Besides exploiting the RSS features to
index resources in term of their static attributes, research is ongoing about
more powerful DHT-based algorithms. At present time we have prototypes
developed as research related to XtreemOS, that need further improvement
and study, and could be exploited within the ADS. To focus more on this
point we need to rely on a stable DHT management system.

XtreemOS–Integrated Project 10/38

D3.2.8 IST-033576

• Handling dynamic attributes: we defined and implemented a few backward
compatible extensions to the JSDL language in order to support dynamic
data for multi-dimensional queries. This works exploiting the RSS and fil-
tering out the intermediate results with dynamicaly updated information held
in the ADS DHT.

Currently Supported JSDL Attributes

We designed a minimal extension of the JSDL query language, which by default
does not support the concept of dynamic resource attributes, to allow the users to
specify range queries over dynamic attributes.

We worked on the assumption that each “dynamic” attribute has a “static”
counterpart, e.g. free memory is associated to machine memory, available com-
puting power is proportional to peak performance and the amount of free CPU
cycles, and so on.

For each attribute handled by the ADS, an optional epsilon tag in JSDL, with
a real value between 0 and 1, is used to express a query on the dynamic value
associated to that attribute. The epsilon is optional as both attributes (static and
dynamic) make sense in a query, but a dynamic query has always a static underlying
query (which in the implementation provides the list of candidates to the dynamic
query engine).

The threshold value for a query about a dynamic value is computed multiplying
the LowerBound (L) attribute of the corresponding static range by the value of the
epsilon. This produces and extended range that the value of the dynamic attribute
must belong to.

Conversely, when a resource has a dynamic value lower than threshold, the
node is discarded.

The epsilon value is expressed in the JSDL query by extending the JSDL syntax
with a new attribute “dynamic-epsilon” in the resource tag.

<IndividualPhysicalMemory dynamic-epsilon="0.8">
<Range> .. </Range>
</IndividualPhysicalMemory>

This mechanism minimizes changes to the JSDL syntax, and allows the same
query to address both the dynamic and the static attributes of a resource. As the
RSS ignores the dynamic attribute of the query XML tags, the RSS provides re-
sources with the static attribute within the range; the ADS will then discard those
which, according to the dynamic information, do not belong to the range extended
by the epsilon parameter1.

1The JSDL standard permits unlimited ranges to either negative or positive infinity. A valid
dynamic constraint requires both an epsilon value and a L element.

11/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

1.4 The DHT layer

According to the deliverable D3.2.4 the Service/Resource Discovery System ex-
ploits DHT subsystems for managing information it is expected to provide to a set
of clients. When designing SRDS ISTI - CNR, in order to avoid wheel re-invention,
decided to integrate an existing DHT system instead of developing yet another one
from scratch. The first DHT system chosen was Bamboo[15, 4] , at the time widely
used in the P2P academic community.

The choice of using the Bamboo DHT for the implementation turned out to be
unlucky. Indeed, Bamboo was poorly documented, it has been implemented using
two different languages, Java and C, integrated together in a very bad way, and the
modular design principles are often violated in its implementation. Despite Bam-
boo has been developed in Java it practically requires to be launched as an external
application in a separate JVM, with environmental variables and configuration files
properly initialized beforehand.

Moreover, some Bamboo configuration details depend on private global vari-
able, or are hard-coded at each use, so that cannot be changed without modifying
the Bamboo source code.

This is the case, for instance, of retransmission timeouts due to lost/late TCP
packets. While the timeout employed for some operations are parameters within
the Bamboo configuration file, those file-defined values are not always actually
used, depending on the operation (get, put, internal routing), and in the end on
the choice of the programmer in that particular point of the Bamboo source code.
Changing the extremely conservative, default 5 seconds timeouts for many DHT
operation has required scattered changes in the Bamboo source code, adding more
configuration options to allow the user (that is, the SRDS) tuning the DHT to the
actual physical network.

Besides this being a significant development overhead, and in addition to the
need of packaging a custom version of Bamboo within the XtreemOS distribution,
a few months after its integration with SRDS, it was clear that the development and
the maintenance of Bamboo had been discontinued.

This led with time to increasing Bamboo incompatibilities with newer and
newer releases of several libraries, frameworks and software components that are
used both by Bamboo and by other modules of XtreemOS. In particular, Bam-
boo has become incompatible with the latest releases of the Java environment.
Those incompatibilities were more and more problematic during the preparation of
XtreemOS Mandriva distribution. At present time, in agreement with the other de-
velopment teams, the ISTI - CNR team is replacing the Bamboo DHT with Over-
lay Weaver (OW) DHT as the default DHT library in the next XtreemOS public
release.

XtreemOS–Integrated Project 12/38

D3.2.8 IST-033576

Figure 1.2: Overlay Weaver Architecture, from [16]

1.4.1 Overlay Weaver

Overlay Weaver [17, 16] (abbreviated as OW) is an Open source DHT software
developed as a research project. It is highly modular, configurable and customiz-
able. OW is an overlay construction toolkit, which supports overlay algorithm
designers in addition to application developers. Indeed, for application developers,
the toolkit provides a common API for higher-level services such as distributed
hash table (DHT) and multicast. Applications that rely on the common API do
not depend on specific transport protocols, database implementation and routing
algorithms. The toolkit provides multiple routing algorithms, and besides the sev-
eral structured network it natively supports (Chord, Pastry, Tapestry, Kademlia and
Koorde), it is also possible to customize the network behavior to match specific
requirements and develop new algorithms.

OW has a multi-layer architecture. It is structured in four main layers: Ap-
plications, High-level Services, Routing Services and Storing Services. Typical
usages of the rootkit involve only the first two layers, the other two are devoted to
low-level aspects.

OW also includes a Distributed Environment Emulator. The emulator aim is
to rapidly test new overlays avoiding the overhead of (re)creating them in a real
distributed environment. This is particularly useful in the context of the XtreemOS
project, where, especially in between public releases, at any given time there might
be a limited number of machines available for running a specific version of XtreemOS.

13/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

The OW network emulator can host tens of thousands of nodes on a single com-
puter virtually. Overlay designers can improve rapidly their algorithm implementa-
tions by testing them iteratively on the emulator. They can also make a large-scale
and fair comparison between new and existing algorithms on the emulator. Imple-
mented algorithms do not need any change to work on a real network if they work
on the emulator, thus the OW toolkit enables direct transferal of algorithm research
results to applications.

The Emulator runs a simulation according to the settings defined in scenario
files. The toolkit includes a simple Emulation Scenario Generator for generating a
scenario files with it, either by writing them by hand, or through trace collection,
by running an existing application and translating execution traces into a scenario.

The OW Emulator has two running modes. In normal mode, the whole emu-
lator runs on a single computer. In the parallel mode, multiple computers form a
single emulator in cooperation, making it feasible to run larger simulations. Fig. 1.3
shows the structure of the emulator. Of course, the emulator reads the same sce-
nario file in both cases, and invokes and controls application instances according
to the scenario.

Figure 1.3: Distributed Environment Emulator, from [16]

1.5 Resource Selection Service (RSS)

The Resource Selection Service (RSS) is the module in the SRDS that provides
resource location services based on multi-attribute, range queries over a set of
static attributes of the resources. As documented in [14], the P2P approach adopted
is designed to provide system scalability exploiting the following assuptions:

XtreemOS–Integrated Project 14/38

D3.2.8 IST-033576

(a) Neighboring Cells (b) Node A’s neighbors

Figure 1.4: Attribute space partition and node neighbours example with d = 2.

• all nodes are linked in a hierarchical P2P overlay network,

• each resource node provides information about itself (that is, its own static
attribute values)

• the P2P overlay network is built according to the attribute distribution over
the resources, employing a definition of nested cells that reflects the dimen-
sion of the resource attribute space,

• the P2P network allows nodes to join and leave at any time, eventually per-
forming structure maintenance

• query routing avoids centralization-related bottlenecks, also by exploiting a
definition of neighbour nodes that scatters inter-cell communications among
the nodes of any given cell.

The nodes participating the RSS overlay network are assumed to belong to a
same Virtual Organization, this ensuring that safe and sound authentication mech-
anisms exist to certify node identity. The P2P implementation layer employs a
gossip-based framework, building a P2P overlay on top of it. The assumption that
the attribute values are static guarantees that any node will not change its posi-
tion, after joining the overlay, thus limiting maintenance overhead to that of nodes
joining and leaving.

The evaluation of the RSS has to take into account scalability with respect to
both

• the execution platform size and characteristics and

• the kind of requests issued to the RSS (determined by the amount of re-
sources required, the number of attributes and the value distribution of the
attributes both in the resources and in the queries).

15/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

These aspects were evaluated and reported in [14]. Within XtreemOS, the for-
mer condition is much more stringent than the latter, platform scalability being
conditioned mainly by the amount of resources linked by the RSS and by the ge-
ographical size of the underlying Grid. As such, experiments both on simulators
(PeerSim [13]) and real systems (the DAS-3 cluster [10]) have been performed.
Experiments on the RSS in isolation also evaluated it under different node churn
rates, and its behaviour under massive network failures.

RSS Development Status The RSS has been developed in Java and can be run as
a stand-alone service; within the SRDS, the RSS classes are directly called by the
SRDS Java code. Thus, RSS initialization is triggered during SRDS initialization,
and RSS API is called whenever the SRDS needs to resolve a resource query. The
integration work in order to have the two services cooperate within the same Java
Virtual Machine has required

• defining a data interchange format, based on the JSDL and GLUE [2, 1]
XML standards

• defining an interoperation protocol with the SRDS, and the corresponding
API and its Java implementation in the SRDS and RSS modules,

• implement it with some changes to the RSS interface classes

• change the meaning of some of the attributes managed by the RSS (e.g. the
disk-space attribute) to better match the JSDL/GLUE interpretation adopted
within XtreemOS.

The debug and test activity on the RSS prototype has been performed by the
CNR and VUA teams during the reciprocal integration phase, and then in strict
collaboration with the XLAB team, the Mandriva team and all the core XtreemOS
developers during the XtreemOS integration phase that has led to the first public
distribution of the whole OS .

More on this functional test and debugging activity is reported in section 1.6.
Further performance results comparing the RSS query resource location approach
with classical ones based only on DHTs are discussed in chapter 2.

1.6 Development activity up to M30

This section recaps the development effort performed by ISTI - CNR in the context
of XtreemOS project during the last months.

Since M24 the effort on the SRDS partially shifted from internal develop-
ment toward other main issues: software preparation for the integration of Over-
lay Weaver as DHT subsystem, SRDS the testing and and debugging activity for
XtreemOS packaging, as well as the improvement of packaging procedures.

XtreemOS–Integrated Project 16/38

D3.2.8 IST-033576

1.6.1 Design of the Integration with Overlay Weaver

As already discussed in Section 1.4 the Bamboo DHT subsystem caused several
problems when integrating SRDS within the XtreemOS Mandriva distribution. In
order to avoid those problems in the future, ISTI - CNR started to work on the re-
placement of Bamboo with Overlay Weaver (as detailed in Section 1.4). For doing
this, the DHT abstraction layer inside the Service/Resource Discovery System has
been exploited. That layer has been designed to support the integration of different
DHT systems. This design choice increase the system flexibility allowing the in-
tegration of several DHTs, hence is smarter than a simple substitution of a system
with another.

The Structure of DHT abstraction layer

The DHT abstraction layer for integrating new DHT subsystem in SRDS is com-
posed by different Java packages. One main package represents the abstract layer
(named eu.xtreemos.ads.dht), and additional packages, one for each DHT
implementation, behaving as interfaces with the specific DHT subsystems. In the
following of this section we describe the main classes composing the abstract DHT
layer of the Service/Resource Discovery System.

AbstractDHT is the abstract class that represents each DHT subsystem as
service. DHTLowLevelInterface is an interface for describing low-level func-
tions of a DHT (put, get, remove). The AbstractDHTHLObject abstract class
defines high-level functions, particularly useful for SRDS (e.g a remove oper-
ation performed before a put operation consists in a “publication”). For each
DHT system integrated in SRDS, the class AbstractDHT as well as the class
AbstractDHTHLObject must be extended with specific classes concretely im-
plementing the abstract functionalities defined by the abstract classes. Moreover,
FeatureList class defines the feature that a DHT can exploit. It is associated
with the low-level service object.

The DhtObjectFactory class consists in the main interface to use for ex-
ploiting DHT services both in order to create new namespaces or in order to retrieve
a namespace among the existing ones. It defines two main methods:

• joinnamespace: this method returns an instance of DHT that provide the
specific namespace requested, passed as method parameter, if such a DHT is
already running that DHT is returned otherwise a new DHT is created.

• createnamespace: this method behaves in a very similar way with respect to
the previous one, the main difference consists in the way the method reacts
when a requested namespace already exists. Indeed, if this method is called
with an existing namespace as a parameter, it returns an error. (In the current
version of the software this method has not been implemented yet).

The different DHTs that can be integrated in the Service/Resource Discovery
System through the use of the abstraction layer are executed by SRDS as external

17/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

processes. The ProcessManager class is exploited for handling an external pro-
cess (in particular in this context is used for handling DHTs processes). Roughly
speaking, it provides a thread that periodically read the output buffer of a certain
process.

The integration of Overlay Weaver

The abstraction provided by means of the DHT layer has been used for integrating
Overlay Weaver within the SRDS. The software developed for that integration has
been structured as an independent java package (eu.xtreemos.ads.dht.ow).
It contains the classes implementing the abstract classes that must be extended in
order to run overlay weaver from within SRDS. More in detail, the OWDHT class
is the implementation of the AbstractDHt abstract class, and the OWHLObject
class is the implementation of the AbstractDHTHLObject abstract class. More-
over, the package contains two further classes: OWBridge, that contains the code
for running Overlay Weaver as a separated process, and DhtAccess , that con-
tains the methods for allowing a RPC-based communication between the SRDS
and the Overlay Weaver DHT (running as a separated process).

The package (eu.xtreemos.ads.dht.ow) contains also test classes which
has been used to conduct experiments aimed at testing the basic functionalities of
the Overlay Weaver Distributed Hash Table (for more details see section 3.2).

Figure 1.5: example caption

XtreemOS–Integrated Project 18/38

D3.2.8 IST-033576

Implementation Notes Despite the effort lavished on the code development, the
DHT abstraction layer as well as the Overlay Weaver integration package are still
affected by some issues. In this paragraph are reported all the main features and
problems characterizing the current version of the Service/Resource Discovery
System.

• A DHT is not immediately usable after its creation. Hence, the class imple-
menting AbstractDHT must waits for a certain number of milliseconds
just after the creation of a new DHT before being able to use it. In the
current version of SRDS it is set to 1000 milliseconds. Nevertheless, the
amount of milliseconds to wait is configurable and can be tuned changing
the SrdsConfiguration.deleyAfterCreatingDHT variable.

• Overlay Weaver is executed in the form of an external process. It is done
through the usage of a class as wrapper named OWBridge. This class in-
stantiates a DHT service performing method calls on the Overlay Weaver
package. This class is called via the shell script runow.sh, that script is lo-
cated in the folder /etc/xos/configuration/OW/. Once launched,
this script looks for the class in the jar specified in the classpath (-cp option
to shell line arguments of the Java VM). This implies that for each change
on the OWBridge class the srds.jar has to be rebuilt in order to allow
changes to take effect.

• Transport Level Network Ports are hardcoded. It means that they can not be
changed without re-compiling the Service/Resource Discovery System. The
network port currently used in the software are the standard ones both for
Bamboo and for Overlay Weaver.

• The actual configuration of Overlay Weaver in terms of replication degree,
routing type, etc.. is hardcoded. More in detail, all those configuration pa-
rameters are defined in the OWBridge class.

• The terminateProcess method defined in the ProcessManager class does
not work with Overlay Weaver. After calling the method destroy defined in
the java.lang.Process class, the process of Overlay Weaver continues
to run, and must be killed explicitly. For this purpose a specialized script has
been developed. That script is named stopow.sh and can be found inside
the folder /etc/xos/configuration/OW/.

• Some incompatibilities exist between the Overlay Weaver and Bamboo im-
plementations, due to conflicting version of the Java libraries they employ.
Nevertheless, they will not cause any major problem as long as each DHT is
running in its own process in different environments.

19/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

1.6.2 Testing and Packaging with XtreemOS

Around and after M24, XtreemOS development activities has been requiring in-
creasing efforts on code debugging for inttegration, as well as on packaging proto-
types according to linux source/binary distribution standards. Of course, the three
SRDS, RSS and Bamboo DHT packages were no exception to the rule.

Testing

In this Section we describe the tests conducted on the SRDS. The goal of those tests
was to validate SRDS by means of the analysis of its behavior. The tests aimed at
analyzing the behavior of SRDS not only as stand-alone component but as part of
XtreemOS, considered both running as single machine and running in the context
of a distributed architecture.

We performed the tests using both virtual machines running on Linux (or OSX)
systems and chroot environments. In both cases, for the installation, the setup and
the configuration of XtreemOS systems ISTI - CNR exploited the official guides
available on the XtreemOS versioned system. For the testbeds performed using
the chroot environment, ISTI-CNR downloaded from the distribution repository
all packages needed for running Service/Resource Discovery System. In this con-
text, the configuration that has been tested is the local-config one. For the tests,
CNR used the scripts and classes provided by XLAB. The work with chroot has
been very important for taking confidence with whole system without involving too
much effort, hence focusing the attention only on the real problems without deal-
ing with problems related to (possible) mismatched system configuration. After
several successful tests on chroot environment, CNR moved to virtual machines.
For this purpose has been used the Sun VirtualBox. The installation of XtreemOS
on virtual machines has been performed exploiting the XtreemOS CD provided
by Mandriva. The installation process was always successful. All the packages
needed to SRDS in order to work seems to be correctly installed.

Testing Details The tests has been conducted creating three different types of
virtual machines. Each machine, having its proper features, had to be configured
in a very different way. The types are:

• A local machine (XtreemOS guide Section 4)

• A core node

• A resource node (XtreemOS guide Section 5)

For each one, after the installation, in order to run tests with the very last ver-
sion of XtreemOS, the distribution has been updated through the use of command:
urpmi -auto-update. The local machine configuration has been performed
simply downloading the local-config package from XtreemOS distribution repos-
itory. The other two types of machine nodes has been configured following the

XtreemOS–Integrated Project 20/38

D3.2.8 IST-033576

instruction specified into the guide. The node used as a bootstrap one (the node
which runs the Rss registration service) was the core node that we have setup.

For testing the behavior in a network (even if very small) two virtual node in a
local network have been connected. As the nodes were able to see each other, using
the xconsole provided by xosd, it was possible to submit operation requests to
the Service/Resource Discovery System. With this testbeds we encountered some
problems, and also some issues with the log systems that precluded the straightfor-
ward way to identify problems.

In the end, some of the problems actually were caused by other modules, while
other were more code-related and due to the aforementioned linking problems with
the Bamboo DHT (incompatibilities with specific releases of some Java libraries
required by other XtreemOS packages). With a proper network and system config-
uration, all the connections (between Bamboo and RSS) can be set up to working
condition both in a distibuted settings and in the XtreemOS local-config trivial
set-up.

Packaging

In order to improve the debugging procedures as well as to simplify the automated
code installation and update, ISTI - CNR together with Mandriva worked on the
packaging of SRDS, RSS and the Bamboo DHT customized by ISTI - CNR. The
three packages are now part of the XtreemOS distribution.

Since ISTI - CNR managed the packaging tasks under the steering of Mandriva,
the procedure followed for the packaging as well as the structure of the package are
very similar to the procedures and structures of the other XtreemOS packages. This
aims to create a more coherent checking of XtreemOS packages with respect to
installation and uninstallation procedures, automatic update, dependence analysis,
and functionality testbeds.

A key step towards this goal is the design and implementation of tools for the
automated testing procedures.

Automated Testing The aim of automated testing procedures is to allow SRDS
packagers (typically CNR or Mandriva) having a simple and fast way to determi-
nate if SRDS package is working releasing it. These tests will be used mostly by
Mandriva, and have not been thought for being used by external users.

Current SRDS testbeds are intended to run with local-config configuration. In-
deed, a complete integration testbed must rely on external nodes, making the test
procedure very complex. Nevertheless, in the future ISTI - CNR will move to work
with a distributed configuration and will provide testbeds checking SRDS behavior
in distributed environments.

The test algorithm defined together with Mandriva before delivering a package
consists in the serial execution of the following steps:

1. install local-config packages for XtreemOS

21/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

2. install SRDS/RSS on (all) machine(s)

3. run the SRDS/RSS installation tests

4. remove local-config (*)

5. reinstall SRDS/RSS (*)

6. run distributed SRDS RSS installation tests (*)

The basic idea is that every time an update of SRDS affects any local-config
files, the SRDS developers will have to provide an update for that package, in order
to allow automated testing together with all the other XtreemOS packages.

It should be noticed that the fourth to sixth steps above target testing candidate
packages over a properly configured distributed environment. This is not standard-
ized practice in Linux distributions, but it could possibly be required as part of
XtreemOS packaging standard. The scheme to follow for distributed testing has
thus been defined, but has not yet been implemented or mandated for the current
XtreemOS distribution.

Other tests that are useful for the analysis of the behavior of a software. They
may include both service status test and functionality test. In case of SRDS a few
examples of services status test consists in checking if:

• the correct processes are up and running

• the right transport level network ports are open

• the routing tables are properly configured.

As regards the functionality tests, we are developing a few RMI interfaces that
allow to submit request to the SRDS module without using the communication
framework typically used on XtreemOS. This permit to run some post install test
without the need of other services running. As example, a typical feature test is to
check if the system reply in a proper way to various requests.

XtreemOS–Integrated Project 22/38

Chapter 2

Performance Evaluation

In this chapter we report additional performance results regarding the SRDS. A
key factor in evaluating reproducibility of results is the invariance of the system
behavior with respect to the kind of platform and of its scale. These system features
were already experimentally evaluated in a first design stage, as reported in project
deliverable D3.2.4, for both the ADS and the RSS subsystems.

Here we mainly show

• additional results on a large Grid concerning the evaluation of the ADS ex-
ploiting a different DHT implementation layer from Bamboo, showing that
the SRDS directory service over a large DHT network is of practical utility
also adopting the OverlayWeaver implementation layer;

• a comparison among the dedicated P2P network of the RSS and a main-
stream approach for implementing multiattribute range queries over a DHT
support; we show that the RSS approach scales well, does not cause any
average overhead, and achieves a much better balancing of the query pro-
cessing load scattered among the P2P network than approaches based on a
DHT layer.

2.1 DHT Layer Evaluation – Bamboo vs OverlayWeaver

As we plan to support multiple DHT libraries and DHT configurations in the
SRDS, to match the different service qualities target that different clients will im-
pose on the Directory Services, it is important to show that the SRDS can keep
a sound degree of scalability with the different DHT implementations supported.
This requirement is even more strict for the DHT library used by default, that is
going soon to change from Bamboo to OverlayWeaver (reasons were explained in
Chapter 1).

We show a comparison on a large Grid platform among the behaviour of the
SRDS employing OverlayWeaver and results previously obtained employing Bam-

23/38

IST-033576 D3.2.8

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500

M
ill

is
e
c
o
n
d
s

Network Size

Get Response Time (One Requester - interval 27 sec)

Bamboo
OWeaver

(a) Get request every 27 sec, 1 Requester

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500

M
ill

is
e
c
o
n
d
s

Network Size

Get Response Time (One Requester - interval 27 sec)

Bamboo
OWeaver

(b) Get request every 11 sec, 1 Requester

-40

-20

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

M
ill

is
e
c
o
n
d
s

Network Size

Get Response Time (33% Nodes - interval 27 sec)

Bamboo
OWeaver

(c) Get request every 27 sec, 33% of Requester
nodes.

-40

-20

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

M
ill

is
e
c
o
n
d
s

Network Size

Get Response Time (33% Nodes - interval 11 sec)

Bamboo
OWeaver

(d) Get request every 11 sec, 33% of Re-
quester nodes.

Figure 2.1: First and Second Scalability Test - Grid5000 Platform at 32 – 484
nodes scattered among 1 – 5 clusters, all nodes provide information. First test, one
Requester invokes 20 Get requests with assigned time interval. Second test, 33%
of nodes concurrently run 20 get requests with assigned time interval.

XtreemOS–Integrated Project 24/38

D3.2.8 IST-033576

boo. It should be noted however that the OW tests were performed using the Chord
DHT algorithm [18].

We exploit the same Grid platform (Grid5000), and apart from the actual selec-
tion of Grid nodes, which is hard to reproduce exactly, we employ the same testing
conditions as in deliverable [14]. To summarize, all nodes involved in each test
provide information about themselves to the DHT, once every 30 seconds, and the
DHT performance is measured in three different test conditions, for a subset of the
whole platform ranging from 32 to 484 nodes.

Scalability 1 — A basic latency measure, where one Requester Node periodically
asks information about another nodes (essentially a “get” operation on the
DHT).

Scalability 2 — A latency measure when the network is normally congested; a
constant fraction (33%) of the nodes concurrently and periodically query
information about other nodes.

Reliability — A measure of information recall to show DHT overlay rebuilding
after (massive) node churn or failure. Here a fraction of the DHT nodes
are killed (choice is random) and all the information in the DHT is queried
twice, immediately after the “failure”, and one minute later.

In Figures 2.1(a) and 2.1(b) we see the First Scalability test; in the compar-
ison, using OverlayWeaver leads sometimes to a larger latency but more regular
latency. Figures 2.1(c) and 2.1(d) show that OverlayWeaver leads to a cost on a
loaded network that increases with network size faster than that of Bamboo does,
but is still logarithmically growing. We can extrapolate that the SRDS latency
will be in the order of one hundred milliseconds even for networks with the same
characteristics and one order of magnitude larger. Considering the fact that Over-
layWeaver in these tests has not been deeply tuned1, and that Bamboo code is no
longer maintained by its original developers, it is clear that the more modular struc-
ture of OverlayWeaver is a good substitute for Bamboo both on the performance
side and on the development efficiency side.

Similar conclusions can be drawn from the Reliability tests. In Figure 2.2
we see a comparison of the Reliability tests of Bamboo and OverlayWeaver. In
this case what should be observed is that even in presence of massive faults the
overlay network is able to rebuild. The key point in this test is that we spread
information about all the nodes in the DHT ring. When a large number nodes are
killed, information is lost, and part of it is later restored as the providing nodes
still alive update their information, which is reassigned. The fact the the amount of
information after one minute from the failure (2nd get in the graphs) grows toward
the original amount means the network is able to heal. Note that the DHT can
restore up to 100% of the original information content even if much less than the

1We recall that in order to obtain a good performance from Bamboo, the CNR development team
had to change several timeouts hard-coded to 5 seconds in the Bamboo code.

25/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70

%
 O

b
ta

in
e
d
 V

a
lu

e
s

% Killed Nodes

Reliability Test - 100 Nodes multiple sites

Bamboo 1st Get
Bamboo 2nd Get

OW 1st Get
OW 2nd Get

(a) Result comparison with 100 nodes

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70

%
 O

b
ta

in
e
d
 V

a
lu

e
s

% Killed Nodes

Reliability Test - 308 Nodes multiple sites

Bamboo 1st Get
Bamboo 2nd Get

OW 1st Get
OW 2nd Get

(b) Result comparison with 308 nodes

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70

%
 O

b
ta

in
e
d
 V

a
lu

e
s

% Killed Nodes

Reliability Test - 484 Nodes multiple sites

Bamboo 1st Get
Bamboo 2nd Get

OW 1st Get
OW 2nd Get

(c) Result comparison with 484 nodes

Figure 2.2: Reliability test - Comparison between Overlay Weaver and Bamboo
with respect to overlay self-repairing and information recall features, when 16%,
33% and 66% of the nodes leave the network. We measure the percentage of
information recovered immediately after the failure (1st get) and one minute later
(2nd get).

XtreemOS–Integrated Project 26/38

D3.2.8 IST-033576

Figure 2.3: Histogram of query overhead (# of query processed - 50) on 1000-node
networks with the RSS and with a SWORD-like DHT based approach. Nodes
ranked and sorted by diminishing load.

initial amount on nodes still belong to the overlay, as the information is always
hashed and replicated across the DHT ring. How close to the initial content a DHT
can get depends on the actual DHT algorithm used, on the amount of replication
degree selected, and on the interplay between the hashing and the physical node
distribution. In the test reported, we see that on average Overlay Weaver is able to
recover less information. As Overlay Weaver has not yet been extensively tuned
for these tests, it hashing and routing function are different and and the two tests
were performed on different subsets of the Grid5000 clusters, some difference in
the degree of information recall is normal.

2.2 RSS evaluation with respect to a DHT-based approach.

We compare the execution of multi-attribute range queries on the RSS with the
behaviour of a DHT (in our case Bamboo) with a SWORD-like implementation
[12] of range query resolution.

In SWORD, node attributes are stored in the DHT at keys corresponding to the
values of each attribute (plus a random skew to spread apart equal values). Thus,
there are d keys that will store a node in the DHT if there are d attributes. We
employ the same key generation method of SWORD.

The tests use a uniform distribution of all nodes attribute values over many
different dimensions (as described for each graph). Queries are also distributed
uniformly among the nodes (a different node begins each query). Queries are for
50 nodes (out of 1000) and the selectivity is .125.

27/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

Figure 2.4: Average query load on nodes over multiple runs, plotted for a varying
number of dimensions of the attribute space.

Figure 2.3 shows the graph for the query load. The y-axis represents the num-
ber of requests seen by each node over the course of 50 queries (that is, the number
of times the node has had to process a query). The x-axis is ranked and sorted by
the y-axis value. The RSS numbers go off the right side of the graph, of course,
out to above 800.

We’ve scaled2 the y-axis for the DHT values to put them in line with the over-
head. The definition of overhead we use is: for a query for X resources, the over-
head is the number of overlay nodes serving the query, minus X . In the RSS P2P
approach, we have to contact at least X nodes, and actual query execution will be
the more closer to optimal the less nodes in excess it needs to contact.

Of course, most nodes are never contacted by a query in a DHT approach, so
the DHT “overhead” will be negative according to this definition. On the other
hand, what we really care for is that there are no hot-spots which suffer critical
load under a normal query traffic, and this is the property that RSS has to verify.

It is already apparent that the DHT approach causes a small number of nodes
to withstand a query load which is roughly proportional to the network size, while
the RSS essentially balances query load among the nodes.

2The scaling has been performed recording the number of requests for keys to the storage manager
in Bamboo and the number of DHT is queries. We record both numbers as a form of double check on
the estimate of the number of DHT nodes contacted, as the Bamboo implementation is quite involved
and cumbersome, and often unnecessarily performs some internal operations.

As for the overhead, the DHT is queried on average 15 times to satisfy a query for 50 nodes. By
that record, the routing overhead (as defined for RSS) is -35 (the leaf sets are about 11-12 nodes, so
forwarding appears to be minimal and doesn’t require a database lookup anyways).

XtreemOS–Integrated Project 28/38

D3.2.8 IST-033576

Figure 2.4 represents something of the converse. The y-axis is an average (over
multiple runs of 50 queries) of how many nodes process each request, but as query
cost rather than routing overhead, so this time the DHT numbers are not negative.

Here query load is number of nodes that actually process the query on average
(that is 50 + routing overhead in previous graphs for RSS experiments) for a vary-
ing number of dimensions (that is the number of attributes). The numbers for RSS
on the Peersim simulator are from previous experiments on a smaller number of
nodes.

As we average over multiple runs, the DHT approach also converges to the
same figures than the RSS, the hot-spots being canceled out in the average by
the lower load imposed on most nodes (the “negative overhead” of the DHT with
respect to the RSS). Besides, the two approaches exhibit the same average load,
so the RSS does not pay a significant cumulative overhead in order to balance the
load among its nodes.

The two graphs combined show that while a DHT can put little load on most of
the nodes for range queries (and scale sublinearly with the number of dimensions),
the load can concentrate on a small set of nodes and thus overwhelm them on any
large scale implementation.

This confirms that the two-stage approach used in resource query resolution by
the SRDS is useful for queries that are not degenerate3, as it avoids potential bot-
tlenecks in selecting a relatively small number of interesting nodes, and eventually
exploits from a DHT in order to narrow down the first candidate list taking into
account information that it is not convenient to access by the RSS approach (e.g.
heavily dynamic data and unfrequently used attributes).

3asking for a large fraction of the nodes in the platform would be inefficient anyway

29/38 XtreemOS–Integrated Project

Chapter 3

Functionality Evaluation

In this chapter we discuss how functional testing is conducted in the SRDS devel-
opment. The test methodology is actually composed by two different kind of tests:
Black-Box Testing and Unit Testing.

• Black-Box testing is performed directly on the high-level interfaces, which
have to meet specific protocols defined for the client using them.

• Unit testing is exploited on the key modules composing the SRDS, in or-
der to minimize error propagation during code development, and increase
modularity.

3.1 Black-box Testing

Test definitions for the JDS client interface of the Service/Resource Discovery Sys-
tem are reported in table 3.1. The table includes both positive tests, which return an
operation complete message, and negative tests, which shall return errors. For our
purpose each file represents a possible JDS query. These requests are submitted
via a local RMI interface to the SRDS module. Afterwards, the reply obtained is
checked against the expected result.

The same testing approach described above is employed also for AEM client
testing. In this case, the context is only slightly different w.r.t. the JDS client. Each
file is converted into the JSDL format specified by XtreemOS and submitted via
RMI to the system. During the query resolution process, the request is refined by
the RSS module. The response for an AEM request is in the GLUE format; its
correctness is checked once received back from SRDS.

At the current implementation status, the RMI interface is only used for the
above described internal testing. However, in the next future, this interface will
be also used to automate the tests for the packaging process (more details were
reported in section 1.6.2).

30/38

D3.2.8 IST-033576

Table 3.1: List of test input files, their purposes and expected test outcomes.
Input Script Description Expected Behaviour
InsertJob.input Insert the information about a new Job:

the jobId, the @jobManager and
the userId.

Success

InsertDuplicateJob.input Insertion of a job with jobId parame-
ter unspecified.

Raise Exception: ADSJobIdAlreadyPre-
sent

InsertDuplicateJob.input Insertion of two jobs with the same
jobId.

Raise Exception: ADSJobIdAlreadyPre-
sent

Add.input Insertion of a new job attribute, together
with its proper value, specifying a valid
triple jobId, attributo, valore.

Success

AddAttributeExist.input Insertion of two new attributes named
in the very same way.

Raise ADSWrongAttributeException

AddAttributeNull.input Insertion of a new attribute with no
value assigned to.

Raise ADSWrongAttributeException

AddJobIdNotExist.input Insertion of a new job attribute to an
non-existing jobId.

Raise ADSKeyNotFoundException

Update.input Update a job value for an existing job. Success
UpdateJobIdNotExist.input Update an attribute value of an non-

existing job.
Raise ADSKeyNotFoundException

UpdateAttributeNotExist.input Update a non-existing job attribute. Raise ADSWrongAttributeException
GetAttribute.input Returns an attribute value of a job,

it takes as parameters: jobId,
attribute.

Success

GetAttributeJobIdNotExist.input Fetch an attribute value of an non-
existing job.

Raise ADSKeyNotFoundException

GetAttributeNotExist.input Fetch an attribute value of an non-
existing attribute.

Raise ADSWrongAttributeException

RemoveJob.input Remove a job using its jobId. Succes
RemoveJobNotExist.input Remove a job using an non-existing

jobId.
Raise ADSKeyNotFoundException

RemoveAttribute.input Remove a job attribute passing as pa-
rameters: jobId and attributo.

Success

RemoveAttributeNotExist.input Remove an non-existing attribute. Raise ADSWrongAttributeException
RemoveAttributeJobIdNotExist
.input

Remove a job attribute to an non-
existing jobId.

Raise ADSKeyNotFoundException

31/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

Table 3.2: List of all Junit classes along with a description of features tested.
Test class name Testing subject
JDSClientImplementationTest Add, update and remove operations on jobs and attributes. List of meth-

ods: testAddRemoveJob(), testUpdateJobAttribute(), testAddRemoveJobAt-
tribute(), testGetJobIDByValue().

DhtObjectFactoryTest DHT creation and namespaces management. List of methods: testCreate-
NameSpace(), testJoinNameSpace_1(), testJoinNameSpace_2().

OWDHTTest Low level DHT operations: get, put and remove. Similar class is provided for
Bamboo. List of methods: testPut(), testGet(), testRemove().

OWHLObjectTest High level DHT operations: getValues, putValues and removeValues. Similar
class is provided for Bamboo. List of methods: testPutKeys(), testGetValues(),
testRemoveKey().

QueryProviderTest General logic for direct and reverse queries. List of methods: tes-
tUpdate(), testDuplicateUpdate(), testGetID(), testGetReverse(), testRemove-
FreeAttribute().

3.2 Unit Testing

In the context of SRDS, JUnit testing aims to validate the correctness of internal
ADS module integration. The tests are used to guarantee that the implemented
operation semantics is consistent with the specification. Hence, each single step
of operations is handled as expected. Test classes have been designed for being
used to analyze the main functions of the classes, i.e. testing a single method or
simple method combination. Currently, they do not support the test of the behavior
in-the-large, hence on a running distributed system.

The current SRDS JUnit tests deal only with the core aspects of the package.
Nevertheless, in the future they will be extended in order to support the testing of
the whole set of modules of the SRDS package. Regarding the functionality details,
the tests cover all the DHT subsystem, in particular the low-level and high level
operations for both Bamboo and Overlay Weaver. Moreover, tests are provided for
the query engine of the JDS operations.

The table 3.2 lists all the JUnit classes used to test core functionalities. Along
with each class a brief description is given of the tested features, and a list of
corresponding class methods.

As an example, we consider how the sequence of operations implementing a
JDS attribute update is completely tested in all its steps inside the SRDS.

Junit test for JDS Client

The UpdateJobAttribute method updates the value of an attribute associated to a
job, assuming the job is already present in the system. The JUnit code depicted in
Figure 3.1 tests this update operation. It adds a new job into the system, then adds it
a couple of attributes, then it modifies the value of the last attribute. Finally it tests,
performing a request, that the corresponding value has been updated correctly.

XtreemOS–Integrated Project 32/38

D3.2.8 IST-033576

@Test
public void testUpdateJobAttribute()
{
jds = new JDSClientImplementation();
jds.addNewJob("JOB", "jbmng", "me");
jds.addJobAttribute("JOB", "att1", "67");
jds.addJobAttribute("JOB", "att2", "997");

String result = jds.getJobAttributeValueByName("JOB", "att1");
Assert.assertEquals("67", result);
result = jds.getJobAttributeValueByName("JOB", "att2");
Assert.assertEquals("997", result);
}

Figure 3.1: A sample method of the JDSClientImplementationTest class.

Junit test for Query Provider

The semantics of a resource update is defined by the Update method of the Query-
Provider engine. This method retrieves data from underlying overlay, updates
the values, and then re-writes data into overlay. This behavior is tested by the
QueryProviderTest class (figure 3.2). A new container class for attribute is created
(SerializedHash). Then, it is inserted into the system as an attribute of a job.
After, another slightly different container is associated to a job in order to simulate
an update operation. Finally, data are retrieved to check if the values insertion has
been correctly performed.

Junit test for DHT layer

The QueryProvider class relies on a DHT for storing and retrieving information.
The class OWHLObject contains the method needed for interfacing with a DHT
(in this case OverlayWeaver). The example method (Figure 3.3) only verifies that
a couple <key, values> has been correctly inserted into the DHT.

33/38 XtreemOS–Integrated Project

IST-033576 D3.2.8

@Test
public void testUpdate() throws Exception
{
SerializedHash sh = new SerializedHash();
sh.addAttribute("att1", "value1");
sh.addAttribute("att2", "value2");
ResourceInfo res = new ResourceInfo("jobid", "jobmng", sh);

qp.doReversePubblication(res);

sh.removeAttribute("att2");
sh.addAttribute("att2", "value2.1");
res = new ResourceInfo("jobid", "jobmng", sh);

qp.doUpdateResource(res);

SerializedHash result = qp.doIDSearch("jobid", "jobmng");
Assert.assertNotNull(result);
Assert.assertEquals("value2.1", result.getAttributeValue("att2"));
}

Figure 3.2: Sample method of QueryProviderTest class.

@Test
public void testPutKey() throws Exception
{
int r = dht.putOverwriteKey(key, values);
Assert.assertTrue(r >= 0);
}

Figure 3.3: Sample method of OWHLObjectTest class.

XtreemOS–Integrated Project 34/38

Chapter 4

Conclusions

The results presented in this deliverable complement those already shown in pre-
vious project deliverables, which provided early evaluation of the design and pro-
totyping approach. The results presented here show that the good performance of
the Service/Resource Discovery System is not due to a single specific implemen-
tation solution or a specific test conditions, but are repeatable given the described
condition.

The performance of the main modules of SRDS has been tested over different
execution platforms (simulated machines, clusters, structured Grids à la Grid5000
and DAS, loosely coupled distributed environments like PlanetLab). In each plat-
form SRDS performance resulted quite good. Moreover, SRDS behavior showed
to be coherent across the several different architectures.

In addition to isolated tests, additional activities were entailed to ensure that
those good results are reproducible on a wide range of test cases. In particular,

• careful engineering of the SRDS prototype in order to ensure it expandabil-
ity, flexibility, robustness; the synergic combination of the ADS and RSS
systems, when deployed within the XtreemOS complex software architec-
ture must easily deploy, interoperate and scale over different hardware plat-
forms

• providing automated test and packaging procedures to ease integration within
XtreemOS

The SRDS approach exhibits good performance independently of the DHT
used. In order to give an empirical proof of it, this deliverable discussed the recent
development of the SRDS, showing in Chapter 1 the need of moving to a different
DHT layer, and reporting in Chapter 2 the comparable performance obtained w.r.t.
the previous DHT layer Bamboo, when used over a large Grid.

Besides, we also showed that the RSS module outperforms DHT-based ap-
proaches in terms of load balancing and ability to avoid hot-spots, while enjoing
the same degree of scalability in asymptotic terms. This confirms that the choice of

35/38

IST-033576 D3.2.8

exploiting a sinergy of two different P2P approaches is a scalable way to support
the complex resource queries over very large Grids, those that XtreemOS targets.

The detailed description of the repeatable testing procedures has been given
in Chapter 3, describing both Black-Box testing and Unit testing of the SRDS
architecture. Some of the testing procedures described will be put in place within
the SRDS package release routine.

Summarizing, this deliverable contains experiment results showing that the
SRDS prototype performs consistently over diverse platforms, from the perfor-
mance and functional viewpoints. Moreover it explains how to exploit the testing
mechanisms to check its behaviour when modifying and deploying it.

XtreemOS–Integrated Project 36/38

Bibliography

[1] Sergio Andreozzi. XML Schema mapping of the GLUE Schema specification
V.1.2, May 22nd 2006. http://glueschema.forge.cnaf.infn.
it/Mapping/XMLSchema.

[2] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough,
D. Pulsipher, and A. Savva. Job Submission Description Language (JSDL)
Specification, Version 1.0. Technical Report GFD.136, Open Grid Forum,
2008. Available from OGF at http://www.ogf.org/gf/docs/.

[3] Matej Artac. XtreemOS Distributed Framework — DIXI. Technical report,
XtreemOS Consortium, 2009. In preparation.

[4] Bamboo DHT web site. <http://bamboo-dht.org/>.

[5] Linux XOS specification. Deliverable D2.1.1 , XtreemOS WP 2.1.

[6] Design and implementation in Linux of basic user and resource management
mechanisms spanning multiple administrative domains. Deliverable D2.1.2 ,
XtreemOS WP 2.1.

[7] Design of the Architecture for Application Execution Management in
XtreemOS. Deliverable D3.3.2 , XtreemOS WP3.3.

[8] Requirements Documentation and Architecture. Deliverable D3.4.1,
XtreemOS WP3.4.

[9] Security requirements for a Grid-based OS. Deliverable D3.5.2 , XtreemOS
WP3.5.

[10] DAS-3: The next generation grid infrastructure in The Netherlands. http:
//www.cs.vu.nl/das3/.

[11] JSON web site. <http://www.json.org/>.

[12] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Scalable wide-area
resource discovery. Technical Report CSD04 -1334, University of California
Berkeley, Berkeley, CA, USA, 2004.

37/38

IST-033576 D3.2.8

[13] PeerSim. http://peersim.sourceforge.net.

[14] Guillaume Pierre, Paolo Costa, Massimo Coppola, Domenico Laforenza,
Laura Ricci, and Martina Baldanzi. XtreemOS Research Project Deliverable
D3.2.4 Design and Specification of a Prototype Service/Resource Discovery
System, December 2007.

[15] Sean Rhea, Dennis Geels, Timothy Roscoe, , and John Kubiatowicz. Han-
dling churn in a dht. In Proceedings of the USENIX Annual Techni-
cal Conference, June 2004. Online at http://www.usenix.org/
publications/library/proceedings/usenix04/tech/.

[16] Kazuyuki Shudo. Overlay weaver overview. Web site, 2008. http://
overlayweaver.sourceforge.net/.

[17] Kazuyuki Shudo, Yoshio Tanakaa, and Satoshi Sekiguchi. Overlay Weaver:
An overlay construction toolkit. Computer Communications, 31(2):402–412,
February 2008. Special Issue: Foundation of Peer-to-Peer Computing.

[18] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet appli-
cations. In Proceedings of the ACM SIGCOMM ’01 Conference, San Diego,
California, August 2001.

XtreemOS–Integrated Project 38/38

