
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Security Services prototype month 36
D3.5.12

Due date of deliverable: 30/05/2009
Actual submission date: 29/06/2009

Start date of project: June 1st 2006

Type: Deliverable
WP number: 3.5

Task number: T3.5.2

Responsible institution: Rutherford Appleton Laboratory,
Science & Technology Facilities Council,
Harwell Science and Innovation Campus,

Didcot, Oxon OX11 0QX, United Kingdom
Editor & and editor’s address: Ian Johnson

Version 1.0 / Last edited by Ian Johnson / 29/06/2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.0 05/05/09 Ian Johnson STFC Created outline
0.1 08/05/09 Matej Artač XLAB Added initial RCA text
0.2 04/05/09 Chengchun Shu ICT Description of VOWeb front-end
0.3 15/05/09 Aleš Černivec XLAB Added initial VOPS text
0.4 29/05/09 Ian Johnson STFC Description of root CA, CDA, architecture
0.5 25/06/09 Alvaro Arenas STFC Inclusion of reviewers comments; general revision
1.0 29/06/09 Ian Johnson STFC Expanded description of CDA and general revision

Reviewers:
Corina Stratan (VUA) and Santiago Prieto (TID)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.5.2 Specification of XtreemOS Security Services STFC∗, XLAB, ICT

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

1 Executive Summary
This document describes the second prototype of XtreemOS security services, im-
plementing the services specified in D3.5.4, the second specification of security
services. The services produced by XtreemOS WP3.5 are the fundamental mecha-
nisms to prove a user’s identity for authentication purposes in the Grid. These user
credentials can then be evaluated in Grid-level VO policies to enable authorization
decisions to be made concerning actions requested by subsystems on behalf of the
user, such as resource matching in AEM job submission.

In comparison with the first prototype, deliverable D3.5.5, this prototype in-
cludes the full functionality of the Resource Certification Authority (RCA) and
adding flexible database management to the functionality of VO Management,
extending the registration process by allowing users to register with a Grid, to
create/join VOs, and to obtain XOS credentials; furthermore, extending the VO
management process by operations to create a VO, add users/groups/roles to a
VO, and managing applications to join a VO.

1

Contents
1 Executive Summary 1

Glossary 4

2 Introduction 5
2.1 Enhancements over First Prototype 6
2.2 Standards and Profiles used . 7

3 Prototype Description 8
3.1 Prototype Outline Description 8

3.1.1 Brief Introduction . 8
3.1.2 Prototype Functionality 8
3.1.3 Prototype Architecture 8

3.2 Prototype Integration . 8

4 Security Services and Interfaces 9
4.1 X-VOMS . 9

4.1.1 Overview . 9
4.1.2 The XtreemOS Root Certification Authority 9
4.1.3 The X-VOMS Database 10
4.1.4 The Credential Distribution Authority 10
4.1.5 The CDA Client . 10
4.1.6 The CDA Server . 11

4.2 RCA . 12
4.2.1 Brief Introduction . 12
4.2.2 Major Components . 13

4.3 VOPS server . 14
4.3.1 Brief Introduction . 14
4.3.2 Major Components . 15

4.4 VOLife . 17
4.5 Interaction between Security Services 18

5 Installation and Configuration of Security Services 19
5.1 X-VOMS Root Certification Authority 19
5.2 Configuring X-VOMS database 20
5.3 Configuring and Running a Credential Distribution Authority (CDA)

Server . 23
5.4 RCA . 26
5.5 VOPS . 28
5.6 VOLife . 31

2

6 User Guide for Security Services 33
6.1 Using X-VOMS . 33

6.1.1 Introduction . 33
6.1.2 CDA Client . 33
6.1.3 X-VOMS Guide for VO Administrators 36
6.1.4 Operating the Root Certification Authority 36

6.2 RCA . 36
6.2.1 User guide for Resource administrators 38
6.2.2 RCA guide for Site administrators 44
6.2.3 RCA guide for VO administrators 45

6.3 VOPS . 46
6.3.1 Console commands for VOPS 46
6.3.2 VOPS managed through GUI 47

6.4 VOLife . 48
6.4.1 Manage VOLife users 48
6.4.2 Manage identity . 48
6.4.3 Manage VO . 48
6.4.4 Manage Resource . 49

7 Conclusion and Future Work 50
7.1 Future Work . 50

3

Glossary
AEM Application Execution Management

CDA Credential Distribution Authority

CA Certification Authority

CSR Certificate Signing Request

DIXI Distributed XtreemOS Infrastructure

NLP Node Level Policy

PDP Policy Decision Point

PKI Public Key Infrastructure

RCA Resource Certification Authority

VOM Virtual Organization Management

VOPS Virtual Organization Policy Service

VOLife Virtual Organization Lifecycle service

XtreemFS XtreemOS File System

X-VOMS XtreemOS Virtual Organization Management Service

XOSD XtreemOS Daemon

4

2 Introduction
The second prototype of the services for security and VO management implements
the services specified in D3.5.4, Second Specification of Security Services [2] .

The services produced by XtreemOS WP3.5 are the fundamental mechanisms
to prove a user’s identity for authentication purposes in the Grid. These user
credentials can then be evaluated in Grid-level VO policies to enable authorization
decisions to be made concerning actions requested by subsystems on behalf of the
user, such as resource matching in AEM job submission.

The credentials are contained in an XOS Certificate identifying a user. This
certificate is submitted along with, for example, an AEM job request to authen-
ticate the job requester. The user’s VO attributes (such as their Global ID) are
contained in the certificate and will be used by the VO Policy Service in mak-
ing VO-level policy decisions, and in mapping to local UIDs/GIDs for node-level
access control.

The principle of establishing trust between XtreemOS users and XtreemOS
services is to use a Trusted Third Party - the Credential Distribution Authority - to
enable clients to trust servers.

The security services use Public Key Infrastructure (PKI) standards and OGF
profiles defining public key certificates to reflect best practice and to allow for
interoperability with other Grid middleware systems.

VO policies are expressed in the XACML language, allowing flexibility and
the possibility of tool support for creating policies in the future.

The specification of Secure Virtual Organization Management in D3.5.4 de-
fines the following VO services:

• VO Management Service to allow creation of VOs, management of VOs,
and checking of VO membership

• VO Policy Service A Policy Decision Engine for VO-level policies

• Credential Distribution Authority (CDA) to issue XOS Certificates to XtreemOS
users

• Resource Certification Authority (RCA) to offer resources to a Grid and
issue resource certificates to hosts

In the second prototype, we group the VO Management Services and the Cre-
dential Distribution Authority under the logical unit X-VOMS, the XtreemOS VO
Managment Service.

5

The Second Prototype also provides the following web applications:

• VOWeb front-end Allow user to register with a Grid, create/join VOs, obtain
XOS credentials

• RCAWeb front-end Register a RCA with a Grid, and add resources to an
RCA

These web interfaces are the main usability feature added in the second pro-
totype. They allow a user to conveniently interact with the XtreemOS security
services from a web browser.

2.1 Enhancements over First Prototype
The RCA service, implemented shortly after M18, was not available for the First
Prototype. The RCA was released in the XtreemOS First Sofware Release at M30,
and has since been additionally enhanced.

The functionality of the VO Management service is backed by a flexible database
interface, storing details of users and their registration status, details of VOs,
groups and roles.

The command-line CDA client has the following refinements:

• Allow selection of primary group, as well as primary VO;

• Request specific lifetime for an XOS certificate;

• Use an existing private key for the certificate request, rather than creating a
new private key.

Users can now interact with X-VOMS in the following ways:

• Registration Allow user to register with a Grid, and provide a means for a
Grid administator to approve or reject applications.

• Identity ManagementCreate a private key and XOS-Certicate via the VOWeb
front-end, in addition to the command-line CDA client.

• VO Management Create a VO, and add groups/roles to a VO. Apply to join
a VO. VO owners can approve/reject such applications.

6

2.2 Standards and Profiles used
To lay the foundations for interoperability with other Grid middleware sys-

tem, XtreemOS uses well-established Grid standards. The fundamental princi-
ples and standards for Public Key Infrastructure are described in IETF RFC3280
[6]. The XOS Certificate conforms to the Public Key Certificate profile defined
in RFC3280, and also to the Proxy Certificate Profile defined in RFC3820[9]. In
addition, XOS Certificate conforms to the most relevant recommendations in the
OGF Grid Certificate Profile [5].

The VO Policy Service defines policies in the XACML 1.1 language [4]. The
CDA, VOPS and RCA are first defined in [1], First Specification of Security Ser-
vices, and are further refined in [2], Second Specification of Security Services.

7

3 Prototype Description

3.1 Prototype Outline Description
3.1.1 Brief Introduction

The second prototype of the security and VO Managment services builds on the
experience gained by use of the first public release of the XtreemOS software, and
also adds extra tools and interfaces to make use of these services easier.

3.1.2 Prototype Functionality

The second prototype of the security and VO manager services provides the
means of establishing the user’s identity, their authentication credentials and their
VO attributes. Resources on a resource node can be certified by the Resource
Certification Authority, and offered to a VO for user by the RCA client program.

3.1.3 Prototype Architecture

The VO model in XtreemOS supports multiple VOs in a single XtreemOS Grid.
The second prototype of the XtreemOS Security Services assumes the following
minimal configuration:

Service Instance count Placement
X-VOMS single core node
VOWeb single core node
RCAWeb single code node
VOPS single core node
RCA 1 instance per administrative domain core node

Placement of components The X-VOMS and VOWeb components access the
same database, and are only supported running on the same host as the database
server.

3.2 Prototype Integration
As there is minimal interaction between the services, the integration of the com-
ponent services into the prototype is focussed on ensuring non-duplication of con-
figuration information.

8

4 Security Services and Interfaces
This section describes in more detail the functionality provided by the following
services: XtreemOS VO Management Service (X-VOMS), the Resource Certifi-
cation Authority, and VO Policy Service (VOPS). The web front-ends VOFron-
tEnd and RCAFrontEnd are also described here.

4.1 X-VOMS
4.1.1 Overview

The XtreemOS VO Management System comprises the following components
and services:

• The XtreemOS Root Certification Authority

• The X-VOMS database

• The Credential Distribution Authority.

X-VOMS provides the following functionality:

• Establishing the root of trust in an instance of an XtreemOS Grid

• Creating service certificates to protect client-server communications

• Accepting user enrollment requests

• Creating and distributing user XOS Certificates.

4.1.2 The XtreemOS Root Certification Authority

The XtreemOS Root CA holds the root of trust in the system, the Root CA
private key and public key certificate. The Root CA private key is used to sign
service certificates issued for XtreemOS Grid services; this allows a client con-
necting to such a service to authenticate the service whilst establishing an SSL
connection. The client node has access to a local copy of the XtreemOS Root CA
certificate, which contains the public key matching the Root CA private key.

The Root CA credentials are created once, when an XtreemOS Grid is first
installed. The Root CA public key certificate needs to be installed on every node
in an XtreemOS Grid. When a new grid service is installed, the Root CA is
used to convert a certificate signing request (CSR) for this service into a service
certificate.

9

4.1.3 The X-VOMS Database

The X-VOMS database holds registration information about users (such as their
username, real names, expiry date, host organisation etc), and information on VOs
(such as VO names and identifiers, roles and groups).

Database entities The X-VOMS database uses the Hibernate Object-Relational
Mapping library to allow a flexible VO model. Entities in a VO are identified by
system Globally Unique Identifiers 1 (GUIDs), and also short and long descrip-
tions for convenience in displaying information to the user.

4.1.4 The Credential Distribution Authority

The Credential Distribution Authority provides a means for users to obtain an
XOS-Certificate which contains their VO identity, and their VO attributes defining
which VOs and groups they belong to, and which roles they hold. The CDA is
implemented by a server which accesses the X-VOMS database.

CDA Protocol The CDA server processes requests from the corresponding CDA
client, the command-line program get-xos-cert. This takes the form of
a protocol with two commands. The user’s username and password are sent
with the AUTHENTICATE user,password command. The response to this
is AUTHOK if the details are verified. The request for a certificate is sent with the
command: CERTREQUEST voName,groupName <CSR>. Here, the voN-
ame and groupName are sent, along with a CSR structure, which contains the
user’s public key and some optional X.509 request extensions. The response to to
this is the user’s XOS Certificate.

4.1.5 The CDA Client

The CDA client program, get-xos-cert, is used whenever the XtreemOS
user needs to obtain an XOS-Certificate. This contains their VO attributes, and
normally lasts for 30 days.

Establishing an authenticated connection between the CDA client and CDA
server The CDA client establishes a secure connection to the CDA server using
SSL. The server sends the client a certificate chain consisting of the CDA’s service
certicate and the XtreemOS Root certificate. The client verifies the connection by
checking that the hostname encoded in the CDA’s service certificate is the same

1http://en.wikipedia.org/wiki/Globally_Unique_Identifier

10

as the host it is connecting to, and that the CDA’s service certificate has been
signed by the private key corresponding to the public key contained in the service
certificates. Finally, the CDA client checks that the Authority Key Identifier field
in the CDA service certificate corresponds to the client node’s local copy of the
XtreemOS Root CA certificate. If all these tests succeed, the CDA client can
be confident that it is connecting to the authentic CDA server for this XtreemOS
Grid. This is important, as the CDA client needs to protect the user’s username
and password, which are sent in the next step.

Authenticating the user to the CDA server The CDA client prompts the user
for their username and password, and sends the AUTHENTICATE command to
the CDA server. If the user is authenticated successfully, the next step is executed,
otherwise the CDA client prints an error message to the user and exits.

Creating a private key and Certificate Signing Request (CSR) in the CDA
Client The CDA client can create a new public/private keypair for the user, or
use an existing keypair. (The latter option is more efficient for resource-limited
nodes). If a new keypair is created, the user is prompted for a secret pass-phrase to
protect the keypair, and the keypair is stored in a file readable only by the user. If
an exisiting keypair is specified, the user is prompted for the passphrase protecting
the keypair.

Sending the CSR to the CDA server The CDA client creates a Certificate Sign-
ing Request, and the public part of the key is added to it. If the user specifies a
desired duration for the XOS-Certificate, this is encoded as an extension field in
the CSR. The CSR is then signed by the user’s private key, which allows the CDA
server to establish the authenticity of the public key that is contains. Finally, the
CDA client sends the names of the primary VO and primary group along with the
CSR structure to the CDA server in the CERTREQUEST command.

Receiving the XOS-Certificate When the CDA client receives the XOS-Certificate
in response to the CERTREQUEST command, it verifies that the creator of the cer-
tificate is the CDA by checking that the signature on the XOS-Certificate is valid.
If this succeeds, the CDA client stores the XOS-Certificate in the user’s filestore.

4.1.6 The CDA Server

Processing a connection request When the CDA client opes a connection to
the CDA server, the CDA server sends a certificate chain consisting of the CDA
service certificate and the XtreemOS root certificate to the client.

11

Authentication The CDA server authenticates a user AUTHENTICATE request
by checking that the username and password supplied match those stored in the
X-VOMS database, and that the user’s registration has been approved and has not
expired. If any of these details do not match, the user request is rejected.

Handling certificate requests The CDA server processes a CERTREQUEST by
firstly checking that the user is a member of the VO specified as the primary VO.
If this is the case, the user’s public key is extracted from the CSR structure and
used to initialise a new XOS-Certificate for the user. If the user has requested a
specific validity period for the certificate (lower than the default validity period),
the CDA server sets the certificate notAfter date appropriately.

Encoding VO Attributes in the XOS-Certificate Every user in the system has
a GUID for their registration ID. This used as the value of the certificate Sub-
ject:CN field and for the VO attribute GlobalUserID. The VO ID relating to the
primary VO name is used for the attribute GlobalPrimaryVOName. The CDA
server nexts retrieves the list of VOs that the user belongs to from the X-VOMS
database. Any VO IDs apart from the primary VO are put in a list of secondary
VOs. Similarly, all groups that the user belongs to apart from the primary group
are put into a list of secondary groups. The values of the GlobalPrimaryName,
GlobalVOName, GlobalPrimaryGroup and lists of secondary VOs and groups are
then used as the values for certificate extension fields.

Recording issued certificates The CDA server writes a record of each XOS-
Certificate it issues, consisting of the certificate’s serial number, the Subject:CN
field, and the expiry date of the certificate.

4.2 RCA
4.2.1 Brief Introduction

In XtreemOS, the computers as computational capabilities need a means to present
their identity in the process of communication with services and clients. The Ap-
plication Execution Management (AEM) services enable their exploitation, and
checking the trustworthiness of the nodes in a decentralised way is essential for
a system that supports a growing and dynamic grid of resources. Using the PKI
paradigm, the trusted resources can request signed certificates, and the trust checks
can then occur without having to consult a central authority.

The Resource Certification Authority (RCA), developed in the first release,
is a security service that provides a base to bootstrap the trust of resource nodes

12

in XtreemOS. However, a network with the XtreemOS system also requires other
nodes, that do not necessarily provide their computation to the jobs. Therefore
we have extended the RCA’s usage to extend the trust to the core nodes and the
services that run on these nodes.

4.2.2 Major Components

In logical terms, the RCA is a core-level service which issues machine certificates
upon request. However, the life cycle of a machine certificate and the whole mech-
anism of gaining the possibility to have a certificate issued lead to implementing
RCA as an RCA Server service, RCA database, and an RCA client service.

RCA Server. This is the service that provides the main functionality of the re-
source certification. The service runs core-level, and its main purpose is to receive
clients’ requests for issuing certificates, check the validity of the requestee, and
sign the certificates. The RCA Server comprises of the following:

• The RCA Server logic.

• The front-end for both the RCA server logic and the RCA database imple-
mented for DIXI [3].

• The service certificate signed by the organisation’s root certification author-
ity or another authority with the organisation’s root CA in the signature
chain.

RCA DB. This is an implementational unit which stores the following iforma-
tion:

• A list of VO IDs. These IDs represent the VOs that the RCA is a member
of.

• A list of pending resources. This list contains the details of those resources
that the resource administrators have published and could be used for the
VOs.

• A list of registered resources. This list contains the details of the resources
that a site administrator has decided that they can be used for the VOs.

We exposed the RCA DB functionality using the RCA Server’ DIXI service
front-end.

13

RCA Client. The RCA Server is a stand-alone unit, and in principle the users
could interact with it manually or using small programs. We provide the RCA
Client as a DIXI service that runs on each node and eases the administration steps
required when using the RCA. Its functionality includes the following:

• Creation of unique private keys and certification requests.

• Obtaining the details of the node from AEM’s Resource Monitor service.
This saves the resource administrator the tedious collection and entering the
resource’s details.

• Communication with the RCA Server service to send the registration appli-
cation, registration confirmations, and reception of the sign certification.

• Saving, examining and installing the machine certificates.

4.3 VOPS server
4.3.1 Brief Introduction

VOPS is a core-level service, primarily intended serving decisions on user access
to VO resources while performing some actions (e.g. job submission) and dig-
itally signs its decisions before forwarding responses back to services. In other
words, it provides coordinated access control over VO resources by offering VO
level policy decision point (PDP). It also provides Policy Information Point by
creating policy filters taking into account information provided by caller service.
VOPS also provides mechanism to administer policies through its API (Policy
Administration Point) and provided libraries.

VO-level policies and node-level policies form a hierarchical access control
framework that can be tuned to achieve various degrees of control to resource
usage within a VO. Target section of the policy defines the set of decision requests
of a rule, policy or a policy set which are identified by definitions for resource,
subject and action. Target of the policy therefore defines to whom this policy will
apply. There are three types of policies managed through VOPS:

• user policies,

• VO policies,

• node policies.

User policies are managed by users themselves and users must be able to freely
manage policies or rules which belong to them. Each user has his own policy
defined by a target’s subject section of the policy.

14

Figure 1: A generic policy model describing the relationship between PIP, PDP,
PEP, and PAP

VO policies are targeted at managing broad range of users and resource nodes
at a time. So in these policies VO administrator can manage access control of one
specific user or group of users over one or more resource nodes. These types of
policies are most general.

Node policies are policies which belong to a specific node. Target section de-
fines a node to which rules of this policy will apply.

These types are also reflected inside the policy storage. There they are separated
to make administration easier and more intuitive for users/administrators.

4.3.2 Major Components

This section describes management components which are provided by the VOPS.
As illustrated in Figure 1, there are four components related to a general policy
model:

• PEP - Policy Enforcement Point: this is where a user initiates
a request, which contains information about the user, such as certificates,
attributes, and context, targetted resource(s), and actions that the user wants
to perform over the resource(s).

• PDP - Policy Decision Point: a user request is subject to the
decision made by PDP, which can be a integral part of a service (as it cur-
rently stands in XtreemOS) or an independent trusted third party outside a

15

service providing general policy decisions for all services. A PDP is often
attached to a policy store which provides all the policies that the PDP is
used to make the decisions.

• PIP - Policy Information Point: upon receiving a user request,
PDP can refer to PIP for further information, such as additional attributes
about the user, to make decisions.

• PAP - Policy Administration Point: this is a point where a
service administrator adds/modified the policy store.

VOPS comprises of next major components:

• VOPS Server front-end,

• VOPS core,

• VOPS storage.

VOPS Server. The service runs core-level and it enforces user requests against
user, VO level and resource policies for gaining access to specific resource nodes.
This component provides access point for

• policy administration,

• decision point for resource management services,

• filter policies.

PIP constructs request comprised of upper elements in a key-value pairs. Val-
ues are obtained from certificates or JSDL specification. Attributes with prefix
Extensions are obtained from X509 certificate attribute extensions.

PDP is an entity which acts as a decision point, where applicable policies are
evaluated and authorization decision is made. Input to the PDP are attributes and
policies which apply to subject requesting a decision. Decision point is called by
other services like Application Execution Manager’s ResMng.

PAP is used as an administration point, where policies can be initially created,
maintained and eventually removed. PAP acts as a source of policies which are
used in PDP when evaluating a request.

16

VOPS policy storage Currently, policies are stored as plaintext XML files under
the location provided by the VOPS configuration file. In the final release, VOPS
will incorporate eXist [7] as an XML database engine. Replacing our own code
for parsing XML and string manipulation with a tested engine, we have increased
the flexibility of policy languages and the usage of the overall service.

EXist has also simple backup/restore procedures which can be easily triggered
from VOPS. During backup, eXist exports the contents of its database (as stan-
dard XML files) to a hierarchy of directories on the hard drive. This hierarchy is
organized according to the organization of collections in the database. This way
the whole structure of XACML policies will be backed up and could be restored
when administrator wishes to run maintenance procedures (or if automatically
maintenance will be scheduled to run periodically).

4.4 VOLife
In XtreemOS, VO related services X-VOMS, RCA and VOPS are interacted with
using small programs or client services(e.g. RCA client), with which aside from
knowledges of the services themselves a user needs explicitly be engaged in te-
dious tasks such as manually acquiring the certificates, and setting up service
bootstrap configurations. In the cases, the high knowledge requirement and learn-
ing curve impede the usability of core services and thereby limit their widespread
acceptance. Besides the client programs of the services, VOLife is implemented
as a web fronted to these core services, providing a one-site client service that ex-
poses the VO-related functionalities, as well as simplifies the users’ requirements
of accessing the core services via a web interface.

Logically VOLife comprises three major components: identity management,
VO management, and resource management.

Identity management. This is the interface to identity-related services which
provides functionalities including grid user sign up, PKI key pair generation and
download, and XOS certificate signing and maintenance.

VO management. This is a essential part that enables a user to create, control
its own VOs, and request to join/leave other VOs without ownership in order to
provide or share resources.

RCA management. provides a user capabilities of resource management, in-
cluding registering Resource Certificate Authorities (RCAs), adding/deleting re-
sources to RCA and VOs, approving resource adding requests, and acquiring ma-

17

chine certificates. RCA management is a user-friendly interface to the RCA core
service.

4.5 Interaction between Security Services
During the service configuration phase, the Root CA is involved in processing
requests for service certificate (Certificate Signing Requests). The human operator
of the Root CA verifies the authenticity of the requestor, and uses the process-csr
command to create the service certificate from the CSR file.

Once configured, the security services are loosely coupled. There is currently
no inter-service communication.

The VOWeb, RCAWeb and CDA services access the X-VOMS database with
the following access modes:

Component VO Web RCA Web CDA Server
Database Access Mode Read/Write Read/Write Read Only

Currently, the only deployment option supported is to run these services on the
same machine as the X-VOMS database server.

18

5 Installation and Configuration of Security Services
This chapter describes how to install the constituent security services and how to
configure them.

5.1 X-VOMS Root Certification Authority
The Root CA is the top level of the trust mechanism in XtreemOS. It is a critical
part in the XtreemOS Public Key Infrastructure (PKI). To achieve and maintain
the level of trust required by users of an XtreemOS Grid, the Root CA must be
operated only on one machine. This host must be a physically-secure core node
to avoid compromise of the Root CA private key, which would destroy any trust
placed on the Root CA. Some organisations may choose to run the Root CA on a
machine which isn’t connected to a network, to eliminate any risk of intrusion.

The Root CA comprises root entity credentials which are trusted by all partic-
ipants in an XtreemOS Grid, and a mechanism to create service certificates that
identify other XtreemOS core services.

The package rootca-config contains the configuration files for creating a
Root CA, and for creating service certificates from Certificate Signing Requests.

Install the rootca-config package. This places configuration files in
/etc/xos/config/openssl. Decide on a directory to hold the files related
to the Root CA, for example, /opt/xtreemosca.

The Root CA certificate is configured by properties in the file
/etc/xos/config/openssl/create-rootca-creds.conf.
The section [root_ca_distinguished_name] can be modified to change
the certificate fields commonName, organizationName and
organizationalUnitName as required. The [req] section Âăcon-
tains the property default_days to set the duration of the certificate’s validity,
and default_bits to set the size of the Root CA private key.

To create the Root CA directory, the private key and public certificate, run the
command presented in Figure 2.

Root # create-rootca /opt/xtreemosca

Figure 2: Creating the XtreemOS Root CA.

You will be prompted for a passphrase - this protects the private key, and is
required when using the Root CA to create service certificates from Certificate
Signing Requests (CSRs). This passphrase must be kept secret to prevent use of
the private key by anyone other than the operator of the Root CA.

19

The private key is created in the sub-directory private under the Root CA
(in this case, /opt/xtreemosca/private/xtreemos.key). The pub-
lic key certificate of the Root CA is the XtreemOS ’root certificate’. It is cre-
ated in the sub-directory public of the Root CA directory (in this example,
/opt/xtreemosca/public/xtreemos.crt). The XtreemOS root cer-
tificate needs to be installed on all machines in this XtreemOS Grid. The certifi-
cate can be placed in
/etc/xos/truststore/certs/xtreemos.crt on these machines.

The Root CA is now ready for its operational role. This consists of processing
Certificate Signing Requests (CSRs) from administrators of core node (for appli-
cations such as CDA, RCA and VOPS servers, and XtreemFS client and servers).
This is described in Section 6.1.4, ’Operating the Root Certificate Authority’.

5.2 Configuring X-VOMS database
X-VOMS (XtreemOS Virtual Organization Management Service) is an advanced
Virtual Organisation (VO) management service for supporting secure and flexible
collaborations and resource sharing among people, projects and organisations. It
is written in Java and back by a (Hibernate-based) X-VOMS database schema.
Like other VO management software packages, X-VOMS provides a set of APIs
for managing identity, attributes, and VO membership of users and resources.

X-VOMS can be used as a backend of different presentation frontends: a web
application (allowing the access via a web browser), and a OS daemon service
(allowing the access via a OS command line console, or directly from a user ap-
plication). In the current release, X-VOMS is not a standalone service. It attaches
to the VOLife web frontend to provide (part-of) its VO management capabilities
to end users. In the future releases, the daemon frontend of X-VOMS will be
offered so that applications can directly utilize X-VOMS functionalities.

X-VOMS manages, but does not distribute, credentials. It can be used with a
Certification Authority (CA), such as the Credential Distribution Authority (CDA)
service developed by the XtreemOS project, or a third-party attribute authority, to
disseminate credentials.

X-VOMS also supports home volume creation for users of XtreemFS, a Grid
file system being developed in the XtreemOS project.

This instruction assumes you know how to use MySQL (e.g. how to add a user
in MySQL). For user management in MySQL, please read:

http://dev.mysql.com/doc/refman/5.0/en/adding-users.html

Software prerequisites The current X-VOMS implementation relies on the fol-
lowing software:

20

• Hibernate 3.0 2 (or newer)

• MySQL 5.1.63 (or newer)

Major files and their location The steps needed to create the X-VOMS database
and load it with data are encapsulated in the script xvoms_prepare_database.sh:

Configure the X-VOMS database, as illustrated in Figure 3.

Root # /usr/share/xvoms/bin/xvoms_prepare_database.sh

Figure 3: Configuring the X-VOMS database.

Running this script is sufficient to allow the following steps ’Installing the
CDA’ (5.3), ’Installing VOLife’ (5.6) etc to be performed.

The following files described below are merely described for reference pur-
poses.

The configuration files are located at: /usr/share/xvoms/. The X-VOMS
library (xvoms-version.jar) is located at: /usr/share/java/.

• /usr/share/xvoms/scripts/setup.sql
This script sets up the basic X-VOMS table schema. It is very important that
you perform this step before starting to test any X-VOMS functionalities.
Without setting up the tables, some security features (such as X-VOMS
access control and authentication) cannot be demonstrated or your requests
will be automatically denied (Figure 4).

Root # mysql -u some_user --password=some_pass < setup.sql

Figure 4: Initialising the X-VOMS database.

This line populates three tables: rules, actors, and actions, which are essen-
tial for X-VOMS.

• /usr/share/xvoms/data/xvoms.txt

a sample xvoms database file, including both schema and some sample data
(users, vos, vo attributes). To use this file to setup a sample xvoms database,
perform the steps presented in Figure 5.

2http://www.hibernate.org/
3http://www.mysql.com

21

Root # mysql -u root --password=xxxxx
mysql> create database xvoms;
mysql> quit;
mysql -u root --password=xxxxx xvoms < \
/usr/share/xvoms/data/xvoms.txt

Figure 5: Populating the X-VOMS database.

An example accounts xtreemos-vouser, is included in the file xvoms.txt
to allow testing X-VOMS. The password for this account is ’xtreemos’.

To refresh the sample file, you can do as shown in Figure 6.

Root # mysqldump xvoms -u root --password=xxxxx -r \
/usr/share/xvoms/data/xvoms.txt

Figure 6: Refreshing the X-VOMS database.

• /usr/share/xvoms/xsl/junit-noframes.xsl

xslt for transforming junit test reports (in XML) to html. This file should be
used with the source distribution of X-VOMS, which contains build.xml
to allow generation of junit test reports for X-VOMS functionalities.

• /usr/share/xvoms/hibernate.cfg.xml a hibernate configuration
file for setting hibernate connection properties. The most notable settings
are:

<property name="connection.url">jdbc:mysql://host:3366/xvoms
</property>
<property name="connection.username">volifecycle</property>
<property name="connection.password">xosvo</property>

• /usr/share/xvoms/log4j.properties a log4j configuration file
for setting hibernate logging properties. The most notable settings are:

log4j.logger.org.hibernate=fatal
log4j.logger.org.hibernate.SQL=fatal

• /usr/share/xvoms/MRC.properties a MRC/XtreemFS home vol-
ume configuration file for setting MRC server properties. The most notable
settings are:

22

mrc.host=localhost
mrc.port=32636

The mrc.host property should be set to the location of the machine run-
ning the MRC server.

Other notes Apart from MySQL, you are free to choose any other JDBC-compliant
database engines that Hibernate supports, including Oracle, DB2, Sybase, MS
SQL Server, PostgreSQL, MySQL, HypersonicSQL, Mckoi SQL, SAP DB, In-
terbase, Pointbase, Progress, FrontBase, Ingres, Informix, and Firebird.
See http://www.hibernate.org/344.html for more details.

5.3 Configuring and Running a Credential Distribution Au-
thority (CDA) Server

This sub-section is for a Grid administrator running a CDA server.
The Credential Distribution Authority is implemented in the cdaserver pack-

age. For the first release of XtreemOS, the CDA server runs on only one core node
in an XtreemOS Grid.

The standalone CDA client program can be used to obtain user VO credentials
from the CDA, and is provided by the cdaclient package.

The CDA server issues XOS certificates to users. The server needs an ser-
vice certificate issued by the Root CA to authenticate itself to the corresponding
CDA client. This service certificate can be obtained by the procedure described in
section 5.3. This procedure also produces a private key, which should be placed
into /etc/xos/truststore/private/cda.key. The service certificate
contains the service’s public key, and should be placed in
/etc/xos/truststore/certs/cda.crt.

As root, install the CDA server as shown in Figure 7.

Root # urpmi cdaserver

Figure 7: Installing the CDA server.

The following aspects of the CDA server are configurable by setting values in
the file /etc/xos/config/cdaserver/cdaserver.properties:

• cdaserver.keyFilename — private key of CDA server - must be kept secure,
readable only by owner.

• cdaserver.keyPassphrase — the private key is secured by a passphrase, the
longer the better.

23

• cdaserver.certFilename — public key certificate of CDA server.

• xtreemos.rootCertificate — public key certificate of root CA.

• cdaserver.sslAlgorithm — cipher used by SSL.

• cdaserver.sslHandshakeCipher — the cipher used in initial SSL key ex-
change.

• cdaserver.signatureAlgorithm — algorithm used to sign the XOS-certificate
returned to user.

• cdaserver.validityDays — number of days that certificate is valid for

• cdaserver.validityHours — number of hours that certificate is valid for

• cdaserver.validityMinutes — number of minutes that certificate is valid
for

The default validity of a certificate is calculated as (cdaserver.validityDays)
days + (cdaserver.validityHours) hours + (cdaserver.validityMinutes) minutes. Any
two of these values can be zero. Hence, the lifetime of certificates issued by the
CDA server can be set on a fine basis, if required. The CDA server will create
a certificate with a shorter lifetime than the default if the CDA client program
get-xos-cert is invoked with the ’-D days’ argument.

Other aspects of the CDA server operation are:
Connection to X-VOMS database - this is set in hibernate.cfg.xml
The level of logging, log file location, etc, are defined in log4j.properties.
Once configured, the server is started by issuing the command shown in Figure

8.

Root # /sbin/service cdaserver start

Figure 8: Installing the CDA server.

The server writes its log files in /var/log/cdaserver/cdaserver.log
by default.

Most service certificates are used to authenticate core services to client pro-
grams. For mounting XtreemFS filesystems, one mode of use is to use the service
certificate for the xtfs_mount application to authenticate the client host to the
XtreemFS server. Alternatively, the XtreemFS mount client can also use an XOS-
certificate if the client is being run on behalf of a single user.

24

Prerequisite for installing any core service application. The following condi-
tions apply:
Before installing any server, the XtreemOS Root Certificate Authority must be
active in your XtreemOS Grid. See Sections 5.1 and 6.1.4 for details.
The create-csr package must be installed; it contains the create-csr com-
mand and an OpenSSL configuration file to create a certificate signing request
(CSR) file for an application. The requestor must then send the CSR to the oper-
ator of the Root CA to obtain the service certificate.

The steps involved are shown below.
The create-csr command creates a Certificate Signing Request (CSR) file.

The arguments to this command are:

• the host name — this is encoded in the subjectAltName extension field of
the certificate, and as part of the Subject CN field. The Fully-Qualified
Domain Name for the host is required, not its IP address. Some client pro-
grams, such as the CDA client, will check this field during the SSL hand-
shake against the FQDN of the server they are attempting to connect to.

• the name of your organisation.

• the name of the application. This is incorporate into the Subject CN field
as <fqhn>/<application>. E.g. for a CDA server at host, the Subject field
would include CN=host/cda.
Legitimate values for the application argument are:

– cda The Credential Distribution Authority server

– rca The Resource Certification Authority server

– vops The VO Policy Service server

– mrc The XtreemFS Metadata and Replica Catalogue Server

– dir The XtreemFS Directory Service

– osd The XtreemFS Object Storage Device server

– xtfs_mount The XtreemFS mount client

An example, creating a request for a service certificate, where host is re-
placed with either the Fully-Qualified Domain Name for the host, or its IP ad-
dress. The last argument to this command identifies the type of service/client that
this certificate will be used by (Figure 9).

The command in Figure 9 produces a private key for the application in host-cda.key,
and a CSR in host-cda.csr. Send this CSR file to the administrator of the
Root CA in your organization to get an service certificate (e.g. host-cda.crt)

25

create-csr host "My Organization" cda

Figure 9: Creating a request for a CDA service certificate.

in return. Install this service certificate in /etc/xos/truststore/certs/cda.crt
and the private key in
/etc/xos/truststore/private/cda.key.

The passphrase protecting the key can be specified in the properties/configura-
tion file of the server it is to be used with. In this case, you must ensure that the file
containing the passphrase is only readable by the owner of the service itself, e.g.
for the CDA server, the properties file should only be readable by ’cdauser’.

Connecting the CDA server to the X-VOMS database The CDA server uses
the Hibernate ORM library to retrieve VO attributes from the X-VOMS. Hiber-
nate uses a JDBC connection that is specified by the parameters in the Hibernate
configuration file, hibernate.cfg.xml. The settings that may need to be
changed here are connection.username and connection.password.

5.4 RCA

The Resource Certification Authority services run as DIXI services.
RCA comes in two packages:

• vom-rca-node — This package contains the node level service which should
run on each node capable of executing jobs.

• vom-rca-server — This package contains the core-side service which usu-
ally runs on one node within a physical organisation.

Both packages depend on the package rcalib, which contains the service’s
logic library.

To install the necessary software, simply use urpmi with the name of the
package. In order to actually run either RCA client or the RCA server, the DIXI
daemon’s configuration file (XOSdConfig.conf by default) needs to have its han-
dler enabled. The configuration files used by the RCA are placed into /etc/xos/-
config/ by default.

The RCA Client does not depend on any AEM services, but it can take advan-
tage of the AEM’s Resource Monitor to learn the details of the local resource.

26

Enabling services in DIXI daemon’s configuration. To have one or both ser-
vices start with the local DIXI daemon, place an empty file with proper file name
into /etc/xos/config/xosd_stages, named after the class that starts the
stage. The names are as follows:

• RCA server: eu.xtreemos.xosd.security.rca.server.service.RCAServerHandler.stage

• RCA client: eu.xtreemos.xosd.security.rca.client.service.RCAClientHandler.stage

Configuring core-level RCA service. The RCA server service creates and uses
the RCAServerConfig.conf to obtain the configuration:

• certDNLocation — the location of the organisation covered by the RCA
server. The value is a part of the distinguished name (DN) of a certified
resource.

• certDNCountry — the country of the organisation covered by the RCA
server. The value is a part of the distinguished name (DN) of a certified
resource.

• certDNOrganisation — the name of the organisation covered by the RCA
server. The value is a part of the distinguished name (DN) of a certified
resource.

• certDNOrganisationUnit — the name of the organisation unit covered by
the RCA server. The value is a part of the distinguished name (DN) of a
certified resource.

• daysCertValidity — The number of days the certificate will be valid, start-
ing from the day of certification and expiring this number of days later.

• privateKey — The path to the server’s certificate authority’s private key.

• certificateFileName — The path to the server’s certificate authority’s pub-
lic key/certificate.

• cdaPassword — The server’s certificate authority’s public key’s passphrase.

• keyPassword — The server’s certificate authority’s private key’s passphrase.

• rcaDBFile — The path to the file containing the RCA DB.

• attributeType — the type of the attribute certificates. Use V2 for attribute
certificates, or V3 for certificates with attributes stored in extensions. The
default value is V3, and it is a recommended value for compatiblity with
openssl libraries.

27

The RCA server requires a private key and a certificate signed by a certification
authority that is trusted by the nodes in the XtreemOS. The RCA server will use
the certificate signed by a commonly trusted root authority to sign the machine
certificate requests. The steps for creating the certificate for the RCA are similar
to those described in Section 5.3 for the CDA server. The location of the private
key and the certificate are defined by privateKey and certificateFileName of the
RCAServerConfig.conf, respectively.

Configuring node-level RCA service. The RCA client service creates and uses
the RCAClientConfig.conf to obtain the configuration:

• cdaCertificateFileName — the path to the RCA server’s certificate author-
ity’s public key/certificate.

• resPrivateKeyFileName — the path to the resource’s private key.

• resIdentityCertFileName — the path to the resource’s identity certificate
(public key).

• resAttributeCertFileName — the path to the resource’s attribute certifi-
cate (attribute certificate).

• resAttributeCertExtFileName — the path to the resource’s attribute cer-
tificate (attributes stored in an extension).

• resVOAttributeCertIncoming — the path to the folder that will store the
attribute certificates pushed from the RCA Server.

5.5 VOPS
VOPS installation and setup VOPS is a core-level service which, due to us-
age of the DIXI framework, runs as a service using DIXI communication stages.
VOPS has to be started in a way like other XOS daemons are: using xosd script
provided in a bundle containing VOPS package. First, administrator has to set
up XOSdConfig.conf and VOPSConfig.conf appropriately. ResMng.conf (on
server, where ResMng service is running) has to be configured appropriately to
use VOPS, see also figure 11. VOPS is a server primarily intended serving re-
quests and forwarding answers from/to resource discovery services and therefore
it needs private key and public certificate to be able to digitally sign its decisions
before forwarding them to services. Services querying VOPS should have access
to VOPS public certificate to be able to check authenticity of its answers.

28

To be able to run VOPS server using DIXI framework, place an empty file
with proper file name into /etc/xos/config/xosd_stages, named after
the class that starts the stage:

eu.xtreemos.xosd.security.vops.service.VOPSHandler.stage

If VOPSConfig.conf does not exist yet, you can run xosd and stop it. This
way VOPSConfig.conf is automatically generated under /etc/xos/config, where
you can edit it manually (see figure 10).

enableAccessControl=true

VOAdminRoles.size=15
VOAdminRoles.0=role_get_VOAttributes4

ResourceAdminRoles.size=15
ResourceAdminRoles.0=res_role_get_VOAttributes

serviceKey=/etc/xos/truststore/private/vopsserver.pem
policyStorage=/usr/share/dixi/VOPS/files/policy/testStorage
keyPassword=xtreemos

Figure 10: A sample VOPS configuration file.

• globalVOPS.port and globalVOPS.host legacy settings that are not used,
so they can be safely comment out or ignored.

• enableAccessControl enables or disables access control: if enabled, exten-
sion (role) from user certificate is checked whether it is one from roles listed
under VOAdminRoles or ResourceAdminRoles.

• VOAdminRoles.size is the size of array defining VO administrator roles.

• VOAdminRoles are roles of users which are permitted to manipulate with
XACML policies. These roles must be same as roles specified in certificates
(VO administrator roles).

• ResourceAdminRoles.size is the size of array defining resource adminis-
trator roles.

• ResourceAdminRoles are roles of users which are permitted to manipu-
late with XACML policies. These roles must be same as roles specified in
certificates (resource administrator roles).

29

• serviceKey is VOPS’s private key used to sign responses.

• entry policyStorage points to storage (XML files) which contains user poli-
cies and resource policies defining access control to users over these re-
sources.

#Properties File for the client application
#Thu Jun 26 13:08:14 CEST 2008
VOPSPubCert=/etc/xos/truststore/certs/vopsserver.pem
testVOPS=true

Figure 11: A sample ResMng configuration file.

While resource discovery services have to check authenticity of the VOPS’s
answers, the node running ResMng service has to include next lines in its config-
uration files. List of entries under ResMng configuration file:

• VOPSPubCert is path to public certificate of the vops server.

• testVOPS enables or disables calls to VOPS service.

It is important that if VOPS is to enforce policies over user queries, RCA
client must run on resource node which is considered in query. VOPS needs to
access RCA client service to obtain resource certificates from which attributes are
considered in the query.

Packages:

• vom-vops —The VOPS service provides means to store and manage VO-
level policies, to obtain the policy filters and the policy decisions on the VO
level.

eXist installation and setup In the second prototype eXist [7] version 1.2 of
eXist database is used. EXist is installed under /usr/share/exist directory where
additional scripts for configuration, running, shutting down and configuration are
provided and are going to be called when installing VOPS on the system so the
installation is transparent for the user.

30

5.6 VOLife

VOlife runs as a web application deployed in Tomcat container. The requirements
to install Volife include Java Development Kit 1.5 above, Apache Tomcat 5.0
above and MySQL 5.0.45 or above.

VOLife is implemented in two parts: backend and frontend.

• backend — This part contains the VOLife database setup sql statements,
and java library (i.e. JAR files) that interfaces to the VO-related core ser-
vices by the VOLife web interfaces.

• frontend — This package forms the core of web application VOLife which
exposes the VO related functionalities for nontechnical users with limited
computer expertise.

VOLife installation comprises of the following steps:
1) Deploy the frontend part as a web application running in tomcat container:

put the frontend part under directory tomcatdir/webapps/volifecycle (Figure 12).

Root # cp volife/frontend /usr/share/tomcat5/webapps/volifecycle

Figure 12: Deployment of the frontend.

2) Create VOLife database. This is done by importing the database schema
and table content into MySQL using the database setup sql statements provided in
the backend part. This is database will also be prepared by xvoms, so the creation
can be skipped if the xvoms has been installed (Figure 13).

/usr/share/xvoms/bin/xvoms_prepare_database.sh

Figure 13: Creation of VOLife database.

3) Install java libraries for VOLife web application. The java libraries to in-
stall are backend library and their dependent libraries, which should be put into
directories WEB-INF/classes and WEB-INF/lib respectively. By default the step
can be omitted as the java libraries has been included in the deployable frontend
part (Figure 14).

4) Configure the web application. One configuration file that may need modi-
fication is for sign up notification email.

31

cd volife/backend;
ant //build the backend classes,
//assuming the dependent java jar files are under
//volife/frontend/WEB-INF/lib/
cd ../../
cp -af volife/backend/build/org
/usr/share/tomcat5/webapps/volifecycle/WEB-INF/classes/.
cp volife/backend/build/eu
/usr/share/tomcat5/webapps/volifecycle/WEB-INF/classes/.

Figure 14: Installation of Java libraries for VOLife.

Configuring sign up notification email. The configuration file can be found
under directory tomcatdir/conf/mail.conf. The file configures the email account
that sends out sign up notification to a grid user when he has signed up. The format
of the configuration file is compatible with JavaMail config file. The common
configuration items are given as follows:

• mail.smtp.host — the hostname or IP address of the SMTP server the sends
out the notitificaiton email.

• mail.smtp.auth — the flag that indicates whether the email sending through
the smtp server should be authenticated, with two possible values true and
false.

• mail.smtp.port — the port number of the smtp server.

• mail.smtp.user — the username of the email account, acting as the sender
of the notification email.

• mail.smtp.password — the password for the email account that authenti-
cates to the smtp server.

An example configuration is presented in Figure 15.

mail.smtp.host=smtp.gmail.com
mail.smtp.auth=true
mail.smtp.port=465
mail.smtp.socketFactory.port=465
mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory
mail.smtp.socketFactory.fallback=false
mail.smtp.password=PASSWD
mail.smtp.user=MAILACCOUNT

Figure 15: Example configuration sign up notification email.

32

6 User Guide for Security Services

6.1 Using X-VOMS
6.1.1 Introduction

The XtreemOS user can access the following features in X-VOMS:

• Identity Management - Store details of user identity, secure their access to
system

• VO Managment - Allow creating/joining VOs

• Credential Management - generate private keys and XOS certificate con-
taining user’s public key and VO attributes

The interface to of these features is available via web front-ends and is de-
scribed in Section 6.4. In addition, there is a command-line tool for credential
management, the CDA client.

6.1.2 CDA Client

The CDA client can be used to generate a user’s private key and obtain their XOS
Certificate containing their public key and their VO attributes. Optionally, the
CDA client can use an existing private key file. The CDA client allows the user to
request a duration for the validity of their credentials.

The CDA client is invoked by the command get-xos-cert. The example
in Figure 16 shows how to request a certificate for the user xtreemos-vouser
belonging to the VO vo1.

$ get-xos-cert host:6730 vo1 -g group1
Enter your username: xtreemos-vouser
Enter password: <not echoed>

Passphrase to protect private key
(at least 8 characters long): not echoed
Type passphrase again to confirm: not echoed

Saving user certificate in
/home/user/.xos/truststore/certs/user.crt,
saving private key file in
/home/user/.xos/truststore/private/user.key.

Figure 16: Example user requesting certificate.

33

The example in Figure 16 retrieves the user’s VO attributes for the VO vo1
and primary group group1. The username supplied is that of the pre-defined user
xtreemos-vouser (password xtreemos).

The values of the user’s VO attributes can be viewed with the command view-
xos-cert, as shown in Figure 17.

34

$ view-xos-cert /home/user/.xos/truststore/certs/user.crt
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

01:21:43:39:3c:16
Signature Algorithm: sha256WithRSAEncryption
Issuer: O=XtreemOS, OU=cda, CN=host/cda
Validity

Not Before: May 15 07:37:53 2009 GMT
Not After : Jun 4 07:47:53 2009 GMT

Subject: CN=ea9a7366-e34f-4a99-9e31-277430366475
X509v3 extensions:

X509v3 Basic Constraints: critical
CA:FALSE

X509v3 Key Usage: critical
Digital Signature, Key Encipherment

X509v3 Extended Key Usage: critical
TLS Web Client Authentication

... (Details excluded)

XtreemOS VO Attributes:

GlobalPrimaryVOName:
2c0e8cb2-4453-46fe-85b7-74874e76e7c2

GlobalSecondaryVONames:
null

GlobalUserID:
ea9a7366-e34f-4a99-9e31-277430366475

GlobalPrimaryGroupName:
ae88816f-9f5c-48f9-ad7d-f71a64977904

GlobalSecondaryGroupNames:\
41ef52b1-8c03-4305-bbfb-9f07245702cd,\
9d481237-26c9-4854-a1e2-e23d1a61059c

Role:
null

Group:
group1

Subgroup:
null

Figure 17: Viewing a XOS certificate.

35

6.1.3 X-VOMS Guide for VO Administrators

Administrating X-VOMS consists of operating the Root CA to provide service
certificates, and running the constituent services.

6.1.4 Operating the Root Certification Authority

The main operating mode of the XtreemOS Root CA is to take Certificate Signing
Requests (CSR files) for applications and convert them to service certificates. The
CSR file can be sent to the administrator of the root CA in an email message or by
other means. The operator of the root CA should save the CSR file and examine
it to check its validity, and contact the originator of the request if necessary (to
verify its source).

For example, figure 18 shows the contents of a request for the CDA server on
the host host (the values in your CSR files will, of course, be different).

Note that the Subject Alternative Name extension field contains the FQHN
(Fully-Qualified Host Name) of the machine that this certificate will be used on.
This hostname, along with the name of the application, is also encoded in the
Subject CN field.

If you trust the originator of this request, and you have validated the request
by examining it as shown above, you are now in a position to generate an service
certificate from the request. Figure 19 shows the step needed to create an service
certificate from a CSR file, in this case for the CDA server at host.

The service certificate is created in the file host-cda.crt in the current
working directory. A copy of the service certificate is also stored in the ’certs’ sub-
directory of the root CA. In the example above, this would be /opt/xtreemosca/certs),
named <NN>.pem. A record of the newly issued service certificate is made in
/opt/xtreemosca/index.txt, including the certificate’s expiry date, re-
vocation status, serial number and CN.

6.2 RCA
The RCA issues machine certificates, encrypted using a so-called machine pass-
word. This means that in principle the resource administrator is never prompted
for the password needed to access the private key part of the machine certificate.
The cycle of the initial sending the resource’s details, registring the resource, re-
questing for certificate and storing it could therefore be done automatically. If an
admin would want a higher level of security, she would need to enter the pass-
word at each boot time or service start-up. However, this would not ensure trust
and security in any way. Therefore we want to have people with authority taking
part within this loop:

36

$ view-csr host-cda.csr
Certificate Request:
Data:
Version: 0 (0x0)
Subject: CN=host/cda, O=XtreemOS Project,OU=cda
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit):
00:d0:ec:ed:89:93:2e:c3:23:47:7c:30:1e:de:fb:
40:bb:9a:6f:bd:77:35:54:28:24:b2:62:9b:cc:9e:
dd:f5:1b:19:55:be:fe:0b:9f:2d:56:a6:98:bd:77:
53:1c:da:38:3a:ba:60:03:90:f9:bc:a4:af:ec:5a:
c1:ec:80:34:cb:bd:fa:18:93:af:c1:84:5d:16:72:
ed:94:e8:eb:59:13:1f:99:6b:ac:93:d3:e5:07:e1:
54:77:e8:8f:44:4c:4a:0b:31:5c:26:af:19:c3:f6:
6c:71:22:cb:0c:56:47:99:f3:14:ab:1b:43:de:e9:
13:48:17:00:f0:da:0c:de:e1
Exponent: 65537 (0x10001)

Attributes:
Requested Extensions:
X509v3 Basic Constraints:
CA:TRUE
X509v3 Subject Alternative Name:
DNS:host.org.domain
Signature Algorithm: sha1WithRSAEncryption

5a:c2:4e:aa:8f:bc:e2:c5:b2:0a:12:20:92:d5:90:de:fb:96:
bb:d7:c3:5f:6d:67:89:5e:b1:6c:e1:9e:c6:e7:8e:e9:42:ea:
0e:65:f1:3d:e9:73:31:44:95:6c:d3:3c:b4:b1:cc:bb:e6:1c:
3c:a2:c1:99:a7:2e:d4:24:10:06:49:99:51:94:53:81:d9:8e:
4d:a2:f5:1c:ac:df:19:e0:f4:bb:96:19:5f:74:88:57:e3:82:
01:e7:93:a1:45:cc:3e:ef:54:28:bb:8a:1e:c0:3a:a9:dd:85:
00:2f:ac:c7:b8:5c:c8:94:99:2f:a7:04:76:d4:74:84:f4:5d:
a7:92

Figure 18: Examining Certificate Signing Request for a service certificate.

Root # process-csr /opt/xtreemosca host-cda.csr

Figure 19: Signing a host CSR file, creating an service certificate.

37

• Resource administrators install the XtreemOS services and provide the en-
vironment for the computation. The administrators that own and prepare
nodes to run core XtreemOS services belong to this category as well.

• Site administrators decide which resources are trustworthy and usable for
XtreemOS. These actors ensure that it is not possible to install any com-
puter with potentially compromised or malicious software, and have it run
alongside the other XtreemOS nodes on the site.

• VO administrators include an RCA in their VOs, or decide an RCA and its
underlying resources would no longer be involved in the VO.

Shell commands provide the functionality for each type of users.

6.2.1 User guide for Resource administrators

The object of the RCA’s operation are the certificates of various purposes. In
order to provide them to the daemons and services, should be placed in the sys-
tem’s directory where the services expect them. The specific directories depend
on the configuration of the service or the daemon. However, as a convention the
XtreemOS services use the default configurations which expect their public keys
and certificates to be placed in

/etc/xos/truststore/certs

and the private keys to be located in

/etc/xos/truststore/private

Registering a resource. A resorce or a node that has a fresh installation of the
XtreemOS system, has to be first registered before it can obtain any certificates
from the RCA. This process involves sending the details on the node to the RCA
server, putting them to the list of the candidate resources. The details needed
include

• the node’s address and end-point (IP, port),

• the node’s static metrics, such as the number of CPUs, the CPU speed, the
memory size etc.,

• the list of services that will run on the node.

These details are collected automatically and sent to the RCA server by calling

$ rca_apply

The process of the node registration needs to be completed by the site admin-
istrator before the resource administrator can proceed.

38

OID Label Explanation
1.34.5.0.15.1 CPUSpeed The clock of the CPU, in Hz
1.34.5.0.15.2 CPUCount The number of computational units (CPU cores or CPUs)
1.34.5.0.15.3 MemorySize The size of the physical memory, in B
1.34.5.0.15.4 Service Services supported by the node

Table 1: Attributes in the attribute certificate.

Machine identity certificate. Before the node’s services can communicate with
other services, they need a valid machine certificate. A resource administrator on
a registered node that has no machine identity certificate or has an expired one,
needs to request for a new certificate. This can be done by calling:

$ rca_request

The script has the RCA client create a new private key, sends the correspond-
ing public key for signing to RCA server and, if properly registered in RCA DB,
lists the obtained certificate contents. It creates and replaces the files containing
the machine certificate and machine’s private key on the node. By default they
are named /etc/xos/truststore/certs/resource.crt for the pub-
lic key and machine identity certificate, and
/etc/xos/truststore/private/resource.key for the private key. The
private key’s permission to read should be applied only for the system administra-
tor (root user).

To see the contents of the certificate, the administrator can then invoke the
command shown in Figure 6.2.1. This certificate identifies the resource through
the Subject, which describes the resource’s location and organisation. The CN
field of the Subject represents the resource’s ID.

Attribute certificate. Along with the machine certificate, the services can also
use an attribute certificate. This certificate is placed in the public certificate folder,
and is named either attrextcert.crt (X.509 V3 certificate) or attrcert.crt
(X.509 V2 certificate), as shown in Figure 21.

This certificate shares the Subject and the public key with the resource identity
certificate. The extensions of the V3 certificate or the attributes of the V2 attribute
certificate contain the items shown in Table 1.

VO certificates. A node can provide its resources to the jobs from any number
of VOs. For each VO, the node needs to have a corresponding certificate installed.
This certificate contains the machine identity’s public key, and an attribute in its
extention states the ID of the VO that can utilise the resource.

39

$ openssl x509 -text -noout -in \
/etc/xos/truststore/certs/resource.crt
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

01:21:1a:1a:1f:f0
Signature Algorithm: sha256WithRSAEncryption

Issuer: O=XLAB, OU=rca, CN=xtreemtej0.xlab.si/rca
Validity

Not Before: May 7 07:59:28 2009 GMT
Not After : Jun 6 08:09:28 2009 GMT

Subject: C=SL, L=Ljubljana, OU=Research, O=XLAB,
CN=Address=[://172.16.117.196:60000(172.16.117.196)]

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
[Details excluded]

X509v3 extensions:
X509v3 Basic Constraints: critical

CA:FALSE
X509v3 Key Usage: critical

Digital Signature,Key Encipherment,Data Encipherment
X509v3 Extended Key Usage: critical

2.5.29.37.0

[Details excluded]

Figure 20: Examining a resource certificate.

There are several means of obtaining a VO certificate for a specific VO:

• The VO administrator can add the RCA to a VO. If the node is registered
with this RCA, the certificate will be pushed to the node.

• The VO administrator can individually add the resource to a VO. The cer-
tificate will be pushed to the node as well.

• The resource administrator can request the certificate from the RCA Server.

Pushing the VO certificate involves the RCA server to notify the node’s run-
ning RCA Client service that it can obtain the VO certificate for a particular VO.

40

$ openssl x509 -text -noout -in \
/etc/xos/truststore/certs/attrextcert.crt
Certificate:
[Details excluded]
Signature Algorithm: sha256WithRSAEncryption
Issuer: O=XLAB, OU=rca, CN=xtreemtej0.xlab.si/rca

Validity
Not Before: May 7 07:59:28 2009 GMT
Not After : Jun 6 08:09:28 2009 GMT

Subject: C=SL, L=Ljubljana, OU=Research, O=XLAB,
CN=Address=[://172.16.117.196:60000(172.16.117.196)]

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
[Details excluded]

serial:05

1.34.5.0.15.1:
..3.49700096E9

1.34.5.0.15.2:
..1

1.34.5.0.15.3:
..5.27433728E8

1.34.5.0.15.4:
eu.xtreemos.system.communication.\
redirector.ServiceCallRedirector,\
eu.xtreemos.xosd.daemon.Daemon,\
eu.xtreemos.xosd.xmlextractor.XMLExtractor,\
eu.xtreemos.xosd.resourcemonitor.ResourceMonitor,\
eu.xtreemos.xosd.jobDirectory.JobDirectory,\
eu.xtreemos.xosd.resmng.ResMng,\
eu.xtreemos.xosd.security.rca.client.RCAClient,
eu.xtreemos.xosd.security.vops.VOPS,
eu.xtreemos.xosd.jobmng.JobMng
[Details excluded]

Figure 21: Examining an attribute certificate.

The RCA Client service automatically sends the VO certificate request, passing
its public key. When it obtains the VO certificate, it stores it into

41

/etc/xos/truststore/certs/incoming/

with the following naming scheme:

• V2 certificates: attrcertVOIDext.crt

• V3 certificates: attrcertVOID.crt

where VOID stands for the ID of the VO.
The client places the pushed certificates into an ”incoming” directory in order

to not have it installed without the resource administator’s intervention. Therefore,
for the pushed VO certificates, the resource administrator has to move the required
VO’s certificates into the certificate directory (/etc/xos/truststore/certs/
by default).

To make an explicit request for a new VO certificate for a VO with ID VOID,
the resource administrator can invoke

$ rca_resource_vo c <VOID>

For example, for VO with ID 65335f10-d113-4f7b-96a8-4d955d5d9cd2
that the resource is a member of, the resource administrator can invoke the com-
mand shown in Figure 22.

$ rca_resource_vo c 65335f10-d113-4f7b-96a8-4d955d5d9cd2
The RCA client received the certificate for VO
65335f10-d113-4f7b-96a8-4d955d5d9cd2. Please
check /etc/xos/truststore/certs/.

Figure 22: Requesting a new VO certificate.

As the command’s shell output shows, in this case the RCA Client obtains and
installs the certificate (Figure 23).

42

$ openssl x509 -text -noout -in \
/etc/xos/truststore/certs/incoming/\
attrcert65335f10-d113-4f7b-96a8-4d955d5d9cd2ext.crt

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

01:21:3e:ce:7d:24
Signature Algorithm: sha256WithRSAEncryption
Issuer: O=XLAB, OU=rca, CN=xtreemtej0.xlab.si/rca

Validity
Not Before: May 14 11:02:48 2009 GMT
Not After : Jun 13 11:12:48 2009 GMT

Subject: C=SL, L=Slovenia, OU=Research, O=XLAB,
CN=Address=[://172.16.117.196:60000(172.16.117.196)]
[Details excluded]

X509v3 extensions:
X509v3 Basic Constraints: critical

CA:FALSE
X509v3 Key Usage: critical

Digital Signature,Key Encipherment,Data Encipherment
X509v3 Extended Key Usage: critical

2.5.29.37.0
[Details excluded]

serial:05

1.34.5.0.15.1:
3.494903808E9

1.34.5.0.15.2:
1

1.34.5.0.15.3:
5.27433728E8

1.34.5.0.15.4:
eu.xtreemos.system.communication.redirector.\
ServiceCallRedirector,
eu.xtreemos.xosd.daemon.Daemon,
eu.xtreemos.xosd.security.rca.server.RCAServer,
eu.xtreemos.xosd.xmlextractor.XMLExtractor,
eu.xtreemos.xosd.resourcemonitor.ResourceMonitor,
eu.xtreemos.xosd.jobDirectory.JobDirectory,
eu.xtreemos.xosd.resmng.ResMng,
eu.xtreemos.xosd.security.rca.client.RCAClient,
eu.xtreemos.xosd.security.vops.VOPS,
eu.xtreemos.xosd.jobmng.JobMng

1.34.5.0.15.5:
65335f10-d113-4f7b-96a8-4d955d5d9cd2

[Details exluded]

Figure 23: Examing an attribute certificate.

43

OID Label Explanation
1.34.5.0.15.5 VO The ID of the VO the resource is in

Table 2: Attributes in the VO certificate.

In addition to the contents of the attribute certificate, the certificate VO certifi-
cate also contains a single VO ID (Table 2).

6.2.2 RCA guide for Site administrators

The site administrators are the authorities within an organisation who ensure that
only the trustworthy nodes are active in the XtreemOS system. In principle, they
need to have no access to the actual resources, but they are the contact of the
resource administrators. The trusworthiness of the resources is thus related to the
amount of trust the individual resource administrator enjoys.

At any point, the site administrator can examine the list of resources pending
for the registration using the command illustrated in Figure 24.

$ rca_list_pending
Listing pending resources:
ResourceID = [IP=172.16.117.196:60000]: [hostIP={Address =
[://172.16.117.196:60000(172.16.117.196)]},
hostUniqueID={172.16.117.196}, operatingSystemName={Linux},
processorArchitecture={x86}, CPUCount={1.0},
RAMSize={5.27433728E8}, cpuLoadLast15Min=0,
cpuLoadLast5Min=1, cpuLoadLast1Min=0]

ResourceID = [IP=172.16.117.156:60000]: [hostIP={Address =
[://172.16.117.156:60000(172.16.117.156)]},
hostUniqueID={172.16.117.156}, operatingSystemName={Linux},
processorArchitecture={x86}, CPUCount={1.0},
RAMSize={5.27433728E8}, cpuLoadLast15Min=10,
cpuLoadLast5Min=13, cpuLoadLast1Min=17]

Figure 24: Examining the list of resources pending for the registration.

In the example in Figure 24, the output of the command was a list containing
two nodes that are waiting for the site administrator’s confirmation. The nodes’
addresses are 172.16.117.196:60000 and 172.16.117.156:60000,
respectively. Each node’s entry also contains a brief overview of the node’s prop-
erties.

To confirm one of the resources thus listed, the site administrator has to use
the resource’s address:

44

$ rca_confirm Resource_Address
For example:

$ rca_confirm 172.16.117.196:60000

This puts the node to the list of the registered nodes, the list of which can be
obtained usign the command shown in Figure 25.

$ rca_list_registered
Listing registered resources:
ResourceID = [IP=172.16.117.196:60000]: [hostIP={Address =
[://172.16.117.196:60000(172.16.117.196)]},

hostUniqueID={172.16.117.196}, operatingSystemName={Linux},
processorArchitecture={x86}, CPUCount={1.0},
RAMSize={5.27433728E8}, cpuLoadLast15Min=0,
cpuLoadLast5Min=1, cpuLoadLast1Min=0]

Figure 25: Confirming RCA Registration

At this point, the resource administrator of the node located at 172.16.117.196:60000
can request a machine certificate for the node.

6.2.3 RCA guide for VO administrators

Each RCA can be a member of any number of VOs. The RCA’s membership in
the VO means that the resources covered by the RCA can individually become the
members of the VO. The following commands are available to the VO adminis-
trators:

• rca_vo a VO_id — add the RCA to the VO with the ID VO_id. This
automatically adds all the registered resources into the VO.

• rca_vo r VO_id — remove the RCA from the VO with the ID VO_id.
This automatically removes all the registered resources from the VO.

• rca_vo l — list the IDs of the VOs that the RCA is a member of.

• rca_resource_vo a VO_id Resource_Address — set the node de-
noted with Resource_Address in the form of IP:Port to be a member of
the VO with VO_id for its id. If the target node is online, the result of the
script invocation will be a new VO-related attribute certificate placed into
the node’s incoming folder.

45

• rca_resource_vo r VO_id Resource_Address — remove the node
denoted with Resource_Address in the form of IP:Port from a membership
in the VO with VO_id for its id.

6.3 VOPS
The VOPS server has a twofold purpose. In most cases, it provides other services
a point for consulting or deciding regarding the policies. For instance, a service
such as AEM requests for a policy related to a specific VO, user group and action
in the VO. Similarly, the ADS/RSS service needs a policy filter that improves the
resource selection. On the other hand, it provides the administrators a way to add
and modify policies and their related rules.

In the first release, the user’s interaction with VOPS was through using the
shell command line, and the policies and rules needed to be passed as text struc-
tured into XACML [8]. While this is still possible, the upcoming release will
support a more user-friendly mechanism, enabling also a GUI front-end.

6.3.1 Console commands for VOPS

The console commands use the API exposed through DIXI framework’s API.
The user needs to have rights to access the policy administration point, regulated
through the user’s role as stored in the user certificate. The commands are avail-
able in the XtreemOS Linux’s dixi-xati package, and can be executed from the
xconsole_dixi shell:

• xlistPolicy -pid 〈polcyId〉 lists policy with specified policyId, which is
stored in the VOPS policy storage. Policy is listed in XACML format.

• xlistPolicies lists all policies stored in the VOPS policy storage. Policies
are listed in XACML format.

• xaddRuleToPolicy -rule 〈xacmlRule〉 -pid 〈policyId〉 adds rule which is
passed as XML string in XACML format (xacmlRule is a path to XACML
file containing XACML rule) to the policy residing in VOPS policy storage
and identified by policyId argument. Returns rule created as a string object.

• xremoveRuleFromPolicy -rid 〈ruleId〉 -pid 〈policyId〉 removes rule iden-
tified by ruleId from policy with policyId.

• xremovePolicy -pid 〈policyId〉Removes policy identified by policyId from
policy storage

46

• xaddPolicy -policy 〈xacmlPolicy〉 adds policy residing localy on the path
xacmlPolicy into VOPS policy storage.

• xreloadVOPS reloads VOPS policy storage.

• xwritebackVOPS writesback VOPS policy storage to directory where pol-
icyStorage entry in VOPS config file points to.

6.3.2 VOPS managed through GUI

Since policy management from console is not easy to perform and not user-
friendly considering policies can be really complex, we have decided to support
policy management from VOLife using web application (Figure 26).

Figure 26: XACML policy editor.

In the third prototype we will provide a tool similar to the one presented in
the Figure 26. VOPS front-end will provide the policy editor content of the policy
which will be edited using tools provided by the VOPS libraries.

47

6.4 VOLife
VOLife contains two types of users: VOLife administrator and ordinary users.
Aside from the functionality of ordinary users, the administrator is responsible
for approving/declining the user signup requests in VOLife.

• VoLife administrator has username admin, and is created by the first user
signup with username admin. The administrator’s signup request is auto-
matically approved so he can login VOLife immediately after the signup.
The administrator is the first user accessing VOLife as no ordinary users
can do before they are approved by the administrator in VOLife.

• Ordinary users are those with username other than admin. The users submit
user signup requests, but are not able to use VOLife until their requests are
approved by the administrator.

6.4.1 Manage VOLife users

Only the administrator can manages the VOLife users. A table listing all VO-
Life users is shown when the administrator selects VOLife’s Manage Users menu.
Each line of the table displays a user’s detail including username, realname, sta-
tus, affiliation and email. The users with pending status are those have submitted
the signup requests but are not approved yet. The adminstrator can either approve
or decline the requests. The approving action changes the user status to approved
and thereby the user can access VOLife, while the declining action deletes the
signup request and the VOLife user.

6.4.2 Manage identity

The administrator and ordinary users with approved status are able to interact with
VOLife’s Identity Management, which consists of the following functionalities:

• Get an XOS-Cert — obtains a certificate signed by a VO owner.

• Generate new keypair — Generates a PKI key pair and downloads the
private key.

• Change Password — Changes the password of VOLife for current user.

6.4.3 Manage VO

The administrator and ordinary users with approved status can create and manage
VOs, and send requests to join and leave other VOs. The detailed functionalities
are given as follows:

48

• Create a VO — Creates a user’s own VO.

• Join a VO — Send requests to join/leave others’ VOs.

• My Pending Requests — Lists the current user’s pending VO requests.

• My Owned VOs — Lists,creates and deletes the current user’s owned VOs.

• Approve Requests — Lists, approves and declines the pending requests
for joining the current user’s owned VOs.

• Manage Groups/roles — Lists, creates, deletes groups/roles/users in the
current user’s owned VOs.

• Manage Policies — Manage VO-related policies (To be implemented).

6.4.4 Manage Resource

Resource management is available to the administrator and ordinary users with
approved status. The exposed functionalities from RCA services are list as fol-
lows:

• Register a RCA — Creates, removes the current user’s Resource Certificate
Authorities.

• Add a Resources — Adds, removes resources to the owned RCAs, and
sends requests to add the resources to the joined VOs.

• My Pending Requests — Lists the current user’s pending VO requests.

• Approve Resource — Lists,approves and declines the resource requests of
the current user’s owned VOs.

• Get Machine Certificates — Obtains the machine certificates(To be im-
plemented).

49

7 Conclusion and Future Work
Conclusions The second prototype of the security and VO management services
provides a set of services to cater for the needs of the Grid administrator, resource
administrator, and Grid end-user. It provides the minimum facilities needed to set
up the root of trust (the offline Root Certificate Authority), the online CDA and
RCA, the VOPS and VOLife web application.

7.1 Future Work
Reducing functionality replicated in VOWeb and CDA server Both the VOWeb
front-end and the CDA server can be used to generate a user’s XOS-Certificate.
Currently, VOWeb calls the certificate generator library directly to create an XOS-
Certificate. This requires the VOWeb configuration to include the filenames of the
CDA public key certificate and private key, and also the passphrase for the CDA
private key, in addition to the VOWeb owner (user ’tomcat’) having read access
to the CDA private key - these requirements weaken the protection of the CDA
private key. Another disadvantage is that VOWeb does not record user requests
for XOS-Certificates, whereas the CDA server logs the IP addresses of incoming
requests, the usernames involved, and details of the certificates issued.

VOWeb could be changed to request an XOS-Certificate the CDA server using
the CDA client protocol. This would have the the benefit of logging requests, and
not needing to share the CDA server’s private key. This change would create a
new interaction between VOWeb and the CDA server.

50

References
[1] XtreemOS Consortium. First specification of security services.

http://bit.ly/XtreemOS-D353, May 2007.

[2] XtreemOS Consortium. Second specification of security services.
http://bit.ly/XtreemOS-D354, December 2007.

[3] XtreemOS Consortium. Revised system architecture. http://bit.ly/XtreemOS-
D317, December 2008.

[4] Simon Godik and Tim Moses. extensible access control
markup language (xacml) version 1.0. http://www.oasis-
open.org/committees/download.php/2406/oasis-xacml-1.0.pdf, February
2003.

[5] David L Groep, Michael Helm, Jens Jensen, Milan Sova, Scott Rea, Reimer
Karlsen-Masur, Ursula Epting, and Mike Jones. Grid certificate profile
(draft). http://purl.oclc.org/NET/OGF-CAOPS-draft-GridCertificateProfile-
v25.pdf, November 2007.

[6] R. Housley, W. Polk, W. Ford, and D. Solo. Rfc 3280 - internet x.509 pub-
lic key infrastructure certificate and certificate revocation list (crl) profile.
http://www.ietf.org/rfc/rfc3280.txt, April 2002.

[7] http://exist.sourceforge.net/. exist-db, an open source database management
system.

[8] Commitee Specification. Oasis standard, extensible access control markup
language, Avgust 2003.

[9] S. Tuecke, W. Welch, D. Engert, L. Pearlman, and M. Thompson.
Internet x.509 public key infrastructure (pki) proxy certificate profile.
http://www.ietf.org/rfc/rfc3820.txt, June 2004.

51

	Executive Summary
	Glossary
	Introduction
	Enhancements over First Prototype
	Standards and Profiles used

	Prototype Description
	Prototype Outline Description
	Brief Introduction
	Prototype Functionality
	Prototype Architecture

	Prototype Integration

	Security Services and Interfaces
	X-VOMS
	Overview
	The XtreemOS Root Certification Authority
	The X-VOMS Database
	The Credential Distribution Authority
	The CDA Client
	The CDA Server

	RCA
	Brief Introduction
	Major Components

	VOPS server
	Brief Introduction
	Major Components

	VOLife
	Interaction between Security Services

	Installation and Configuration of Security Services
	X-VOMS Root Certification Authority
	Configuring X-VOMS database
	Configuring and Running a Credential Distribution Authority (CDA) Server
	RCA
	VOPS
	VOLife

	User Guide for Security Services
	Using X-VOMS
	Introduction
	CDA Client
	X-VOMS Guide for VO Administrators
	Operating the Root Certification Authority

	RCA
	User guide for Resource administrators
	RCA guide for Site administrators
	RCA guide for VO administrators

	VOPS
	Console commands for VOPS
	VOPS managed through GUI

	VOLife
	Manage VOLife users
	Manage identity
	Manage VO
	Manage Resource

	Conclusion and Future Work
	Future Work

