
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Design of Basic Services for Mobile Devices
D3.6.2

Due date of deliverable: May 31st, 2008
Actual submission date: May 27th, 2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.6
Task number: T3.6.2

Responsible institution: Telefónica I+D
Editor & and editor’s address: Luis Pablo Prieto

Telefónica I+D
Parque Tecnológico de Boecillo

47151 Boecillo (Valladolid)
SPAIN

Version 1.0 / Last edited by Luis Pablo Prieto / May 22nd, 2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 13/02/08 Luis Pablo Prieto TID Initial template
0.2 26/02/08 Daniel Galindo & Luis Pablo

Prieto
TID Detailed outline of the document

0.3 16/04/08 TID Team TID First draft of security and execution chapters
0.4 17/04/08 Luis Pablo Prieto TID First draft of API chapter, plus minor formatting

changes
0.5 18/04/08 Jesús Malo BSC First draft of the data chapter
0.6 21/04/08 TID Team TID First draft of the modifications chapter
0.7 22/04/08 Jesús Malo BSC Corrections to the data chapter
0.8 22/04/08 Luis Pablo Prieto TID First draft of introduction, conclusions, future work

and executive summary
0.9 24/04/08 Luis Pablo Prieto TID Fixed missing parts, references etc. First complete

draft
0.91 06/05/08 Luis Pablo Prieto, Manuel

Martín
TID Spellchecking

0.92 07/05/08 Luis Pablo Prieto, Daniel
Galindo

TID Spellchecking and minor corrections

0.93 16/05/08 Luis Pablo Prieto TID Incorporated reviewer’s comments. Still need some
polishing

1.0 22/05/08 Luis Pablo Prieto TID Final state. Ready for submission

Reviewers:
Matthias Hess (NEC), Ian Johnson (STFC)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.6.2 Design of basic services for mobile devices (XtreemOS-G for

MD/PDA)
TID∗, BSC

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary

Mobile access to grid services is a research field that has not been yet fully
solved, either in scientific or industrial research. Among the most common solu-
tions are the usage of grid portals or grid gateways to translate grid requests from
their native form to more efficient and mobile-friendly ad-hoc protocols.

In the XtreemOS project, however, a different approach has been proposed, tak-
ing advantage of the latest advances in mobile device capacities and leveraging the
scalability and transparency features of XtreemOS, like native VO support, usage
of POSIX standards or scalable and highly available services. With this approach,
the mobile devices using XtreemOS “speak the same language” as any other grid
node, transforming them into first class consumers of grid resources. This also is a
much more scalable solution and opens the door to new, grid-transparent use cases
that could appeal to the mass market.

In XtreemOS-MD, this goal of universally accessible grid services is achieved
through two different software layers: a foundation layer that enriches the oper-
ating system with virtual organization support, and a grid services layer which
implements the grid services themselves. This document describes the design of a
first, basic version of XtreemOS grid services (XtreemOS-G) layer, designed for
PDAs. This layer contains the necessary functionality for accessing grid files and
launching and managing grid jobs in a secure manner, as well as the necessary
interfaces for grid applications to access these features.

This grid software package will be composed of a number of standard XtreemOS
modules, which will be ported and modified to run in the restricted PDA platform
in a more efficient and usable way. These modules are: a utility for obtaining
user certificates (CDA client), a way of submitting and managing jobs in the grid
(XATI), a way of accessing grid files and volumes (XtreemFS client) and an ap-
plication interface for accesing these functions (XOSAGA API). Also, a number
of additional mechanisms and utilities have been devised to make the process of
using XtreemOS grid features more intuitive and user-friendly.

The design of these components also contemplates the avoidance where pos-
sible of Java components in favour of native Linux alternatives, given the current
limitations of Java in mobile devices. However, these native components should
be nonetheless portable to any other modern Linux mobile platform, so that Linux
integrators are attracted to incorporate XtreemOS-MD in their solutions.

Moreover, the work in these modifications has been devised in a way that
makes them as generally applicable as possible. Thus, it is expected that many of
those modifications and additional utilities will also be applied to other XtreemOS
flavours, in order to obtain an even more streamlined and usable grid operating
system.

Contents

Glossary 3

1 Introduction 4
1.1 Methodology . 4
1.2 Contents of the document . 5

2 XtreemOS Grid Services for Mobile Devices 6
2.1 Use cases and requirements . 6
2.2 XtreemOS-MD Architecture . 9

3 Common User Management (security client) 12
3.1 Features and functionalities . 13
3.2 Design alternatives . 13
3.3 Architecture and design . 14
3.4 Specific modifications for Mobile Devices 14
3.5 Interfaces . 18

3.5.1 Command-line interface 18
3.5.2 Application programming interface (library) 19

3.6 Examples of use . 20
3.6.1 Command line usage . 20
3.6.2 Application interface (API) usage 20

4 Common Data Access (XtreemFS client) 21
4.1 Features and functionalities . 22
4.2 Design alternatives . 22
4.3 Architecture and design . 23
4.4 Specific modifications for Mobile Devices 24
4.5 Interfaces . 25
4.6 Examples of use . 25

4.6.1 Creation of a volume . 25
4.6.2 Mounting XtreemFS . 25
4.6.3 Unmounting XtreemFS 26
4.6.4 Deletion of a volume . 26

1

IST-033576 D3.6.2

5 Application Execution (AEM client) 27
5.1 Features and functionalities . 27
5.2 Design alternatives . 28
5.3 Architecture and design . 28
5.4 Specific modifications for Mobile Devices 30
5.5 Interfaces . 30

5.5.1 Command line interface 30
5.5.2 Application programming interface (library) 32

5.6 Examples of use . 33
5.6.1 Command-line utilities 33
5.6.2 Graphic interface . 33
5.6.3 Application interface (API) usage 33

6 XOSAGA for Mobile Devices (API) 35
6.1 Features and functionalities . 35
6.2 Design alternatives . 36
6.3 Architecture and design . 37
6.4 Specific modifications for Mobile Devices 37
6.5 Interfaces . 38
6.6 Examples of use . 38

7 Other Enhancements for Mobile Devices 39
7.1 On-the-fly installation . 40
7.2 On-demand startup . 41
7.3 Stopper applet . 41

8 Conclusions 43

9 Future Work 45
9.1 Next steps: implementation of XtreemOS-G for mobile devices . . 45
9.2 Research prospects . 45

References 47

A Specification Lists 49
A.1 Software dependencies . 49

A.1.1 Security client . 49
A.1.2 XtreemFS . 49
A.1.3 Application Execution Manager (AEM) 50
A.1.4 XtreemOS API (XOSAGA) 50
A.1.5 Additional components 50

XtreemOS–Integrated Project 2

Glossary

API Application Programming Interface

AEM Application Execution Management

CDA Credential Distribution Authority

FUSE Filesystem in Userspace

MRC Metadata and Replica Catalog

OSD Object Storage Device

PDA Personal Digital Assistant

PIM Personal Information Management

POSIX Portable Operating System Interface

RMS Replica Management Service

RSA A kind of private key algorithm

SAGA Simple API for Grid Applications

VO Virtual Organization

VOM Virtual Organization Manager

XATI XtreemOS Application Toolkit Interface

XATICA C implementation of the XATI

XtreemOS-F XtreemOS foundation Layer

XtreemOS-G XtreemOS Grid services Layer

XtreemFS XtreemOS FileSystem

XtreemOS-MD XtreemOS for Mobile Devices

XOSD XtreemOS Daemon

3

Chapter 1

Introduction

Mobile access to grid services is a research field that has spawned a number of
publications and projects [4, 6, 5], but which has not been yet fully solved. Among
the most proposed solutions are the usage of grid portals or grid gateways to trans-
late grid requests from their native (mostly service-oriented) form, to more efficient
and mobile-friendly (but mostly ad-hoc) protocols.

In the XtreemOS project, however, a different approach has been proposed,
which takes advantage of the latest advances in mobile device capacities (e.g. in-
creased CPU and memory), but also leverages the scalability and transparency fea-
tures of XtreemOS (e.g. native VO support, usage of POSIX standards, scalable
and highly available services, etc). In this approach, the mobile device version of
XtreemOS (from now on, XtreemOS-MD) “speaks the same language” (i.e. uses
the same protocols) as any other grid node, being thus promoted to first class con-
sumers of grid resources. This also provides the advantage of being a much more
scalable solution than going through the bottleneck of a limited number of grid
gateways/portals, and opens the door to new, grid-transparent use cases that could
appeal to the mass market.

In XtreemOS-MD, this goal of universally accessible grid services is achieved
through two different software layers: XtreemOS-F, a foundation layer that en-
riches the Linux operating system with VO support features, to serve as a base for
XtreemOS-G, the grid services layer that implements the grid functionality itself
(execution and data management, security services, application interfaces...).

This document describes the design of a first, basic version of this XtreemOS-
G layer, designed for Personal Digital Assistants (PDAs). It includes the necessary
modifications that several XtreemOS modules will undergo in order to work (and
do it efficiently) in a mobile device’s limited executing environment.

1.1 Methodology

During this design process, a number of XtreemOS components have been se-
lected, as they were deemed necessary for the basic features that XtreemOS-MD

4

IST-033576 D3.6.2

has to provide, according to a number of use cases (see D3.6.1 [20]). These com-
ponents have been revised and a preliminary port to the ARM architecture (both
through emulators and with real ARM devices) has been attempted, to detect the
most obvious obstacles for the execution in a PDA.

After this first analysis was done and solutions to these most pressing problems
have been proposed, a second layer of modifications has been designed, to opti-
mize the operation of those components under mobile conditions. In this phase, a
number of additional needs in the mobile environment have been detected, and ad-
ditional software components, not related to any XtreemOS-specific system, have
been proposed to fulfill these needs.

Finally, all this information has been gathered in the present document, where
the different components and their modifications are explained, along with their
interfaces and a number of usage examples.

1.2 Contents of the document

This document is organized in the following manner:
In chapter 2, a brief overview of the architecture, use cases and derived require-

ments is provided for completeness, in order to clarify which XtreemOS compo-
nents are needed and why.

Afterwards, chapters 3, 4, 5 and 6 describe the four main XtreemOS compo-
nents that will be needed in the mobile version of XtreemOS-G, including their
functionality, internal architecture, interfaces and examples of use.

Chapter 7 contains the description of a number of additional components that
will be useful in mobile grid environments, but which do not relate directly to any
XtreemOS system.

Finally, chapter 8 collects the main conclusions of the document, and chap-
ter 9 highlights the major next steps in the implementation of XtreemOS-G, also
pointing out some possible future research paths.

XtreemOS–Integrated Project 5

Chapter 2

XtreemOS Grid Services for
Mobile Devices

In order to fully understand the scope and motivation of the grid services to be
offered by XtreemOS for Mobile Devices, which will be described in the following
chapters, we must understand which use cases should be covered by them, and
which requirements are to be met. Here we will briefly summarize this information,
which is more thoroughly covered in deliverable D3.6.1 [20]. Also, to get a better
understanding of how these services fit in the overall picture of the grid operating
system for mobile devices, a summary of the architecture of XtreemOS-MD is also
presented here (see D3.6.1 [20] and D2.3.3 [17]).

2.1 Use cases and requirements

As a previous step to defining the design and architecture of XtreemOS-MD, and
even before the requirements for it could be set, a number of usage scenarios
for XtreemOS-MD were gathered, analysed and categorised, to ascertain the most
suitable implementation order.

These scenarios, which are detailed in previous deliverables, can be roughly
divided into two big groups, from the point of view of the user and her degree of
knowledge of the underlying grid infrastructure (advanced and optional use cases
are presented in italics):

Grid-aware use cases: in this group, grid users (e.g. people from corporations or
academic institutions that usually work with grid technology) gain mobile
access to the XtreemOS grid. As transparency is one of XtreemOS’s main
design principles, this access will be done in a more transparent way than
with conventional grid middleware, but users will be conscious, to a certain
extent, that there are concepts like jobs or certificates being manipulated in
the background. These scenarios include:

6

IST-033576 D3.6.2

• A user will be able to login to the XtreemOS Grid. From then on,
the user is enabled to operate into the Grid according to his role and
permissions.

• A user will be able to launch and manage jobs to be executed in the
Grid. During execution, the user will be notified of the job’s main
events, and she will be able to operate on the job.

• A mobile user will be able to manage VOs from her mobile device, if
she has adequate permissions for doing so. This includes adding/deleting
users, creating VO subgroups, setting resource policies, etc.

• A user will be able to search and manage grid resources: getting a list
of resources available to her, according to certain parameters given by
the user. If she has adequate permissions, she could also define what
resources to share in the Grid, as well as monitor its usage.

• A user will be able to manage grid data, specifying where data will be
stored (logically), the access pattern, privacy level, places where data
can be stored (physically), required level of consistency and coherence,
etc.

• The user will be able to transfer an ongoing grid session to a nearby
device that belongs to the same VO without interruption.

Grid-transparent use cases: in this group of use cases, users that have no knowl-
edge or interest in the underlying grid technology experience the benefits of
XtreemOS in a completely transparent way. These scenarios logically re-
quire functionalities that must be provided to fulfill the grid-aware use cases
(e.g. basic grid infrastructures) and thus, they build upon the previous ones.
In fact, they are even more interesting, since they showcase mass market
applications of grid technology. These scenarios include:

• A user will be able to securely communicate with other grid users in
the same VO, by using a grid-integrated instant messaging applica-
tion. This application will include XtreemOS authentication and se-
curity mechanisms, and will be able to store user preferences and chat
history in XtreemFS grid filesystem.

• A user will be able to transparently store, search and retrieve files
from the grid, stored in the XtreemFS filesystem.

• A user should be able to use grid-based advanced voice recognition
systems, to make up for the lack of an adequate keyboard interface for
entering text.

• A user will be able to interactively participate in grid applications
and workflows, according to the specific user context. This effectively
would allow people to become grid resources.

XtreemOS–Integrated Project 7

IST-033576 D3.6.2

• A user should be able to establish and interact into secure Mobile Ad-
hoc Networks (MANets), by using XtreemOS certificates and security
infrastructure, in case a direct access to the Internet is not available.

• A user should be able to share and use voice communication channels
as grid resources (e.g. mobile telephonic communication).

• A user should be able to participate in mobile multiplayer online games
that utilize the XtreemOS technology, in a secure and billable manner.

NB: The grid systems represented by these use cases will not be developed by
the XtreemOS project (further than the operating system layers), since develop-
ing new grid applications is mostly out of the scope of the project. Two proof-of-
concept applications (a job managing application and an instant messaging appli-
cation) will be implemented in WP4.2 [15].

Once these use cases were defined and prioritized, a number of requirements
for the grid services layer of XtreemOS-MD became clear, specially when a num-
ber of other requirements stemming from XtreemOS reference applications were
added in D4.2.3 [15]. The requirements for the basic version of XtreemOS-MD
include [20]:

• The ability to obtain tracing information from grid applications (e.g. execu-
tion and resources information) (R3.6.1).

• To provide IPv6 support (R3.6.2).

• The ability to manage grid jobs (R3.6.4).

• The ability to monitor grid jobs (R3.6.5).

• To identify mobile nodes as special grid nodes that do not share resources
(R3.6.6).

• The ability to access files in XtreemFS (R3.6.12).

• The ability to mount XtreemFS volumes as any other filesystem (R3.6.13).

• To ensure integrity in filesystem operations from mobile devices (R3.6.14).

• To allow for grid (VO) user authentication (R3.6.17).

• To provide users with single sign-on capabilities (R3.6.18).

• To provide independence between local and grid user accounts (R3.6.19).

• To allow for users to belong to multiple VOs (R3.6.20).

• Means of having confidential communications (R3.6.21).

• To provide a SAGA job management API (R3.6.24).

XtreemOS–Integrated Project 8

IST-033576 D3.6.2

• To provide a SAGA data management API (R3.6.25).

• To provide a SAGA-based security and VO support API (R3.6.26).

• Java support1.

To these requirements, we should implicitly add other hardware, network and
software requirements for the foundation layer on which XtreemOS-G is based
(e.g. usage of a high-end PDA with wireless connectivity, 200+MHz of CPU,
128MB of RAM, additional permantent storage, a modern mobile Linux operating
system with virtual organization support etc). These requirements are discussed in
more detail in WP2.3 documentation [25, 21].

2.2 XtreemOS-MD Architecture

Having all these use cases and requisites in mind, and also taking into account the
structure and implementation of the underlying mobile Linux distribution of choice
in XtreemOS-MD (Ångström), a software architecture of an XtreemOS-MD node
has been drawn [17]. This architecture is reflected in figure 2.1:

Figure 2.1: XtreemOS-MD Software Architecture

As it can be seen, apart from typical Linux components like the kernel, C li-
braries or graphical toolkits, XtreemOS-MD also has a number of basic VO support
and mobility modules that comprise the foundation layer of XtreemOS-MD. These
components provide the necessary OS-level support for transparent terminal mo-
bility (through Mobile IPv6 protocol) and VO support to the upper software layers.
They are developed in WP2.3, and a more thoroughly description of them can be
seen in D2.3.3 [17].

1This requirement is currently being reconsidered, due to poor mobile support for newer Java
features.

XtreemOS–Integrated Project 9

IST-033576 D3.6.2

On top of this foundation layer we have the mobile grid services and function-
alities that are the focus of this deliverable, the so-called XtreemOS-G layer for
Mobile Devices. This layer provides access to the XtreemOS grid services that are
being executed, for the most part, in more powerful (fixed) machines.

This layer is composed of the following modules:

Application Execution Management (AEM) client As we have seen in the use
cases, one of the main objectives of mobile grid users is to be able to launch jobs,
check their status and get information about available resources.

In the concrete case of XtreemOS, this will be implemented by offering XATI,
the interface to contact the XOSD (XtreemOS Daemon, handling resources and
jobs) that can be located in any other node. With this interface we can build all
needed applications to submit jobs and check the status of resources and jobs.

More concretely, the mobile version of this module will be a slightly modified
version of XATICA, the C implementation of the XATI interface, that has been
developed in WP3.3 [19].

XtreemFS client Regarding the grid filesystem XtreemFS in this MD version,
we only need a mechanism to “mount” a XtreemFS volume and be able to access
grid files for both reading and writing. This service, in the standard version, is
managed through a FUSE module that receives all file operations and redirects
them to the right services in XtreemFS (MRC, OSDs, and RMS) [14, 16]. For
mobile devices, a similar library to redirect all these file operations to the XtreemFS
services will be implemented.

It is worth noting that allowing other users in the grid to access files located
in the MD is not initially planned as a feature of the MD flavour. If these files are
to be accessed from outside the device, they should be copied first to a XtreemFS
volume.

Security client In order to provide the kind of access needed by the aforemen-
tioned use cases, a XtreemOS mobile device node will only need a way to access
the Credential Distribution Authority (CDA) to obtain a XtreemOS certificate for
the user’s grid identity (XOS-Cert). With this XOS-Cert stored in the node (by the
VO support components underneath developed in WP 2.3 [17]), the user will be
able to access, for example, the AEM and the XtreemFS services.

For this purpose, XtreemOS-MD will have a modified version of the C imple-
mentation of the CDA client, developed in WP3.5 [24].

XtreemOS (SAGA) API The XtreemOS API will be based on the Simple API
for Grid Applications (SAGA) API, as detailed in the API deliverables [11, 22, 10].
This API is aimed at high-level application developers who don’t want to know the
fine details about Grid computing or the middleware/infrastructure used, but want
to make use of distributed resources through the Grid.

XtreemOS–Integrated Project 10

IST-033576 D3.6.2

The structure of SAGA is modular, so as to be extended whenever needed.
From the use cases, we can infer that a mobile XtreemOS node will have, at least,
the following components of the API:

• The Look & Feel API, as it is needed by all the other APIs, or at least the
parts of it needed by the components detailed below.

• The SAGA Engine, as it is also a core element, or at least the parts of it
needed by the components below.

• The Namespace package and its corresponding XtreemOS Adaptor, as it is
referred by all the other packages.

• The Job package and its corresponding XtreemOS adaptor (or a subset of it,
as needed by the use cases).

• The File and Logical File packages, and their corresponding XtreemOS adap-
tors (or the subset needed by the use cases).

Optionally, this API can be extended or stripped down as much as possible,
to fit the restrictions of a mobile device environment (e.g. disk space or memory
consumption).

Other XtreemOS-MD enhancements Apart from the aforementioned modules,
designed specifically to communicate with XtreemOS grid services, a mobile node
running XtreemOS could benefit from a number of special modifications that can-
not be included in the previous modules, as they have a more transversal nature.
These modifications include:

• A way of starting XtreemOS services and processes on-demand just when
they are needed, in order to save the scarce memory and CPU resources of the
device. This can take the form of a kind of “launcher application/wrapper”
that checks the existence of the necessary processes and data sets (for ex-
ample, the presence of a XtreemOS certificate), and launches them if not
present.

• A way of stopping XtreemOS services in the device when they are not
needed anymore, again in order to save resources. Following typical mobile
procedures, this can be implemented as a desktop applet that can be used
when services are not needed anymore.

• In order to save disk space, it would also be useful to have only the bare
minimum of XtreemOS functionality installed in the device. If more func-
tionalities are required, they can be installed on-the-fly.

XtreemOS–Integrated Project 11

Chapter 3

Common User Management
(security client)

Security and security-related mechanisms play a central role in many (if not all)
grid systems, and XtreemOS is not different in this regard. As described by WP3.5
[13], there are a number of security areas that are important in typical grid opera-
tion:

Authentication Is the user who she claims to be?

Authorisation Should the user be allowed to do what she wants to do?

Confidentiality Communications and data should only be read by authorised users
(e.g. by using encryption).

All these processes are needed, either implicitly or explicitly, by all the use
cases described in chapter 2, although depending on the concrete context of the
scenario, some of them could be optional (for example, we could decide that con-
fidentiality is not as important as saving computational resources in our mobile IM
application, and thus forego the encryption of communications).

In XtreemOS, confidentiality is attained mostly by standard encryption meth-
ods in the communications (using secure protocols like SSL/TLS), and by restrict-
ing access to data (e.g. files in the XtreemFS filesystem) only to authorised users.

Authorisation is performed, for the most part, in XtreemOS nodes and servers,
which check the credentials presented by the user and applying a number of poli-
cies defined by the Virtual Organization to which both the user and the resources
she is attempting to use, belong.

Thus, we finally come to authentication, the single most important aspect of se-
curity that occurs in the client-side of XtreemOS. To demonstrate the identity of the
user, in XtreemOS it is used a certificate-based solution, using what is called XOS-
Certs (a kind of X.509 certificates), which are issued by a Credential Distribution
Authority (CDA) that serves credentials for the VO. Using typical PKI techniques,

12

IST-033576 D3.6.2

any grid entity can check that the certificate is valid (at least for a certain period of
time) and thus, that the user is who she claims to be.

In this chapter we will describe the functionalities and interfaces of the main
XtreemOS-specific security module which should be present in mobile devices, a
modified version of the CDA client. Other mechanisms like encryption for confi-
dentiality are implemented by standard Linux modules such as OpenSSL [8].

3.1 Features and functionalities

XtreemOS users wanting to use grid resources have to obtain a XOS-Cert from
the CDA, so that PKI methods can be used by nodes and servers to authenticate
them as valid VO members. These XOS-Certs are currently implemented as X.509
certificates, with the CDA of the Virtual Organization acting as the primary Cer-
tificate Authority (CA), and have a limited time validity (VO-configurable, default
value being currently 30 days) [23].

3.2 Design alternatives

CDA client vs. MyProxy When designing a way of getting certificates from a
mobile device, two main options were considered:

The most obvious approach was to have in the mobile device a native CDA
client that directly asks the server for a certificate, implementing the security pro-
tocols for doing so that were specified in WP3.5. This option has the advantage of
being quite simple, conceptually and implementation-wise. But it also has a dis-
advantage, which is that certain “heavy” operations (like the generation of random
keys), are computed in the mobile device, leading to less-than-optimal response
times (e.g. latest evaluations of this operation yielded delays of 2-8 seconds).

Another option was the usage of MyProxy-like solutions for the acquisition
of proxy certificates. In this kind of implementation, the mobile device obtains a
short-term proxy certificate from a MyProxy server [7], who has previously ob-
tained the “real” XOS-Cert from the CDA. This MyProxy would run in a more
powerful (e.g. PC) node, thus freeing mobile devices from some of the heavy
operations involved in getting the certificate. However, the implementation of a
MyProxy solution involves more complicated protocols and the inclusion of a new
entity in the security chain (the MyProxy server), and would require careful con-
sideration and a more costly implementation.

After several conversations with WP3.5 members, it was decided to use a CDA
client in a first phase, and study the feasibility of a MyProxy solution for an ad-
vanced stage of the project.

Java issues The work in WP3.6 has been mainly directed in this case to make the
CDA client more adequate for a mobile device environment (see “Specific modifi-
cations for mobile devices” below).

XtreemOS–Integrated Project 13

IST-033576 D3.6.2

One of these alternatives has been the choice of programming language for
the client. Initially, WP3.5 developed a Java prototype of the CDA client. But first
evaluations on mobile platforms revealed the poor compatibility of open mobile
Java Virtual Machines and libraries with newer Java standards (the Java CDA client
required Java 6, while most mobile open source Java libraries like GNU classpath
[1] do not even completely support Java 5).

This fact led us, after conversations with WP3.5 members, to use a C imple-
mentation of the client, provided by WP3.5 and ported and modified by WP3.6.

3.3 Architecture and design

The architecture of this component is really simple. As WP3.5 implemented it, it
is a single command-line executable which asks for the certificate to a well-known
CDA server, using the username, passphrase and VO identifier that are passed as
command line parameters. The protocol roughly follows this sequence:

1. A random private key is generated by the client

2. A certificate request for the CDA is constructed, and later signed using the
generated private key

3. A SSL connection to the CDA is established

4. The client authenticates with the server using the provided username and
password

5. The client asks for the certificate to the CDA, specifying the VO and passing
the certificate request generated in step 2.

6. After the new XOS-Cert is received, the client verifies its validity

Using this implementation as a base, in WP3.6 a number of modifications have
been made, which will be described in the following sections.

3.4 Specific modifications for Mobile Devices

As we faced the implementation of the CDA client in mobile devices, and after a
few preliminary tests with the software in the XtreemOS-MD development envi-
ronments, we could foresee a number of aspects that will require modifications to
better fit in a mobile environment:

CDA client as a library The CDA client as it was provided by WP3.5 was
just a command-line executable. In mobile devices (and probably also in other

XtreemOS–Integrated Project 14

IST-033576 D3.6.2

Figure 3.1: CDA protocol

XtreemOS–Integrated Project 15

IST-033576 D3.6.2

XtreemOS flavours) it would be very useful to have the same functionality in li-
brary form, so that it can be used by other applications (such as startxtreemos,
see chapter 7) or by a Pluggable Authentication Module (PAM).

The idea behind this modification is that the certificate requests can be issued
implicitly when they are needed, instead of the user having to invoke the CDA
client whenever a new XOS-Cert is needed. In the limited user interface (and
possibly, knowledge) that is available to mobile users, this is certainly a must.
Examples of this function in use may include slightly modified Telnet/SSH servers,
or the kind of grid application launcher/wrapper described in more detail in chapter
7.

Code cleanup/customization for mobile devices A number of slight modifica-
tions have been devised in the original code in order to streamline the process of
the request, specially for minimising the number of user interactions, disk writes
and ciphering operations. Also, the code will provide more configurability about
policies regarding the way and timeframe of the disk storage of the certificates.

Optional SSL communications Given the limited amount of processing capac-
ity and memory available in mobile devices, and the short response times (almost
real-time) needed in this kind of environments, it would be advisable to allow the
deactivation of the SSL communication with the CDA. This would leave the pro-
cess open to potential eavesdropping, but this can be acceptable for certain sce-
narios where confidentiality is not a big issue. An example of this would be when
communicating with a CDA server or a key-generation proxy (see below) through a
secure local network (secure LAN, USB/point-to-point, WPA/EAP Wifi link, etc),
or in scenarios where the security is not a concern at all.

This option would be a fundamental change in how credentials are distributed,
and would reduce the level of confidence of services which receive an XOS-Certificate
from a mobile user. Also, this would imply sending the user’s username and pass-
word in the clear. Thus, this option should be used with caution by VOs.

Of course, if the VO policies require that the SSL protocol is used for commu-
nicating with the CDA, it can reject the requests from this “unsecure client”. The
client should detect this issue and switch to SSL mode in order to complete the
transaction.

Optional Key-generation proxy Another measure aimed at improving response
times and minimising resource usage in the device is the usage of a kind of “proxy
application” to generate the random private (RSA) key and the certificate request,
as these are the most time-consuming steps of the process. This small proxy ap-
plication would run in any user-owned or VO-owned machine (probably a PC or a
laptop), and would relieve the mobile device of performing this chore.

The process of this kind of proxy application would look like this:

1. A SSL connection from the mobile device client to the proxy is established

XtreemOS–Integrated Project 16

IST-033576 D3.6.2

2. The client passes the username and password needed to authenticate with
CDA server onto the proxy

3. The proxy establishes a SSL connection with the CDA server and authenti-
cates using the information provided by the client

4. The client requests the credential to the proxy, specifying the VO

5. The proxy generates a private key and a certificate request, signs the cer-
tificate request with the private key and requests a certificate from the CDA
specifying the VO.

6. The CDA server returns the certificate to the proxy

7. The proxy returns the private key and the certificate to the client

Figure 3.2: (Optional) Proxy-CDA protocol

Alternatively, instead of passing the CDA’s username and password from the
client to the proxy, the client could use some proxy-specific username and pass-
word to access the proxy, which would store the real CDA information associated
to this proxy-specific information. This would allow for simpler passwords to be
introduced with the limited mobile device keyboard facilities (also, see below).

Usage of PIN instead of passphrases In order to ease the entering of passphrases
from the limited keyboards of mobile devices, it could be very useful to allow for
users to have a PIN-like (Personal Identification Number) 4-digit password to ac-
cess the CDA (or the PC proxy, if that option is chosen).

XtreemOS–Integrated Project 17

IST-033576 D3.6.2

To avoid brute force attacks on this PIN, a mechanism should be set up so that,
after a limited number of failed attempts to introduce this PIN (e.g. three attempts),
this mode of input is not allowed anymore, and in this case the user will have to
introduce the full passphrase to authenticate with the CDA or the proxy.

Portability All the aforementioned capabilities shall be implemented with porta-
bility in mind, that is, design for easy porting to other flavours of XtreemOS, since
the modifications proposed (the usage of the CDA client as a library, the proxying
of credentials etc) are worthy additions to other flavours of XtreemOS.

3.5 Interfaces

As it has been already mentioned, there are two main ways of obtaining a cre-
dential with the security client: a user can do it directly through a command-line
executable (quite improbable, due to interface limitations), or by other applica-
tions invoking it (i.e. through a library API). For more advanced uses, WP3.5 will
provide lower-level APIs which allow user interaction with the CDA client, e.g.
prompting again for credentials if the username/password are rejected.

3.5.1 Command-line interface

The command-line version of the CDA client has the following interface:

%./cdaclient <CDA_hostname> <CDA_port> <CDA_PEM_cert> <rootCA_PEM_cert>

Where

• CDA_hostname and CDA_port denote the location and listening port of
the CDA.

• CDA_PEM_cert is the path and name of the CDA server certificate, which
is used to establish SSL connectivity and to verify the validity of the obtained
XOS-Cert.

• rootCA_PEM_cert is the path and name of the root Certificate Authority
that signs the certificate of the CDA.

This command asks for the username, passphrase and Virtual Organization, in-
formation which is used by the CDA to identify the user and issue the certificate. If
all the information is correct, the output of the command is the XOS-Cert received
from the CDA, and verified by the client. Optionally, the certificate can be stored
in some permanent storage or in a credential store like the kernel’s Key Retention
Service (see deliverable D2.3.4 [27]).

XtreemOS–Integrated Project 18

IST-033576 D3.6.2

3.5.2 Application programming interface (library)

The main interface with the CDA client is as follows:

int cda_client(char *hostname,
char *port,char *CDAcertfilename,
char *RootCAcertfilename, char *username,
char *password, char *voname,char **credential,
char **certificate, char verify_cert);

Where:

• hostname and port denote the location and listening port of the CDA.

• CDAcertfilename is the path and name of the CDA server certificate,
which is used to establish SSL connectivity and to verify the validity of the
obtained XOS-Cert.

• RootCAcertfilename is the path and name of the root Certificate Au-
thority that signs the certificate of the CDA.

• username and password are the user’s name and password in the CDA
server, used to authenticate when connecting to it.

• voname is the name of the Virtual Organization for which the user wants
the certificate (this is used in case the same user belongs to more than one
VO, or the CDA serves more than one VO).

• credential is the pointer to the structure where the private key (in PEM
format) will be stored.

• certificate is the pointer to the structure where the XOS-Cert will be
stored, adequately signed by the CDA. If NULL, the XOS-Cert and the pri-
vate key will be stored in credential instead.

• verify_cert indicates whether the received XOS-Cert should be veri-
fied.

This method returns 0 if successful, and other values if there were any errors.
If the optional key-generating proxy is implemented (see above), there will

be a second method, very similar to this one:

int proxy_cda_client(char *hostname,
char *port,char *CDAcertfilename,
char *RootCAcertfilename, char *username,
char *password, char *voname,char **credential,
char **certificate, char verify_cert);

The only difference would be that, instead of connecting to the CDA server,
this method would connect to the proxy, that would generate the RSA key and
perform the rest of the process in a similar way.

XtreemOS–Integrated Project 19

IST-033576 D3.6.2

3.6 Examples of use

3.6.1 Command line usage

Although it is unlikely that a mobile user will use this kind of interface, the CDA
client in XtreemOS-MD should be able to be executed as a command-line utility:

%./cdaclient isegserv.itd.rl.ac.uk 6731 cdacert.pem cacert.pem

3.6.2 Application interface (API) usage

Also, mobile user applications can leverage the library API of this module, to ob-
tain XtreemOS certificates from the CDA, like the following example:

char *voname = (char *) malloc(VONAME_MAX);
char *username = (char *) malloc(USERNAME_MAX);
char *password = NULL;
voname = "esvo";
username = "bob";
password = "password";
...
char *credential;
char *certificate;
int status=cda_client(hostname,port,CDAcertfilename,
RootCAcertfilename, username, password,
voname, &credential, &certificate, 0);
if (!status) {
/* credential and certificate should be used/stored somewhere */

...

}
...

XtreemOS–Integrated Project 20

Chapter 4

Common Data Access (XtreemFS
client)

Most applications do not make sense if they cannot access data stored in a perma-
nent storage system, and this is also the case of many of the use cases described
in chapter 2. In XtreemOS, this permanent storage is offered by XtreemFS, the
component that builds a grid-wide filesystem.

XtreemFS architecture is designed with the aim of getting high availability,
high performance, parallel and concurrent access to data [14]. These challenging
features are achieved by means of a set of scalable and distributed services: OSD,
MRC, RMS and XtreemFS client. The Object Storage Devices (OSDs) store the
real data. A Metadata and Replica Catalogue (MRC) manages the filesystem meta-
data. The Replica Management System (RMS) provides mechanisms for automat-
ically improving data access, using striping and replication. Finally, the XtreemFS
client provides transparent data access to XtreemOS components and, in general,
to any client application.

This XtreemFS client is the component that will be integrated in XtreemOS-
MD flavor, managing data accesses from mobile devices. Complex issues such as
replica selection, concurrent access, consistency and data replication guarantees
will be provided by the remaining components. XtreemFS client will transparently
provide those features to XtreemOS-MD users.

Due to mobile devices’ characteristics, the reduction of power consumption is
a must. Thus, CPU-intensive operations will be requested to XtreemFS services
in order to increase the duration of batteries. Improvements in XtreemFS proto-
cols will be also added in order to reduce the amount of communications needed.
Therefore, the main complexity of XtreemFS protocols and internal mechanisms
will not be included in XtreemOS-MD flavor.

XtreemFS client will provide a POSIX-compliant [9] interface. This interface
is suitable for common operations over files such as reading, writing, deletion and
querying about file attributes. Users will also be able to define advanced data prop-
erties such as striping and replica policies [26].

21

IST-033576 D3.6.2

4.1 Features and functionalities

XtreemFS client will provide the functionality required for accessing XtreemFS.
This functionality will include a POSIX-compliant interface for the filesystem and
the required operations for volumes, striping and replica management.

The usage of Linux virtual filesystem mechanisms will allow data access from
a mount point. Through this mount point, users will be able to perform the whole
set of I/O operations such as open, read, write, stat, close and delete with POSIX-
compliant system calls. They will be guaranteed independently of the underlying
data storage policies. XtreemFS will transparently manage the complexities of
striped data access, replica selection, user authentication, permissions and data
caching.

Nevertheless, features outside of POSIX such as management of XtreemFS
volumes, striping and replica policies will be also provided in the XtreemFS client.
Because these features can affect the performance achieved by data accesses, XtreemOS-
MD users will be able to tune it to their own requirements or delegate it to the
XtreemFS components.

4.2 Design alternatives

There are several complementary alternatives that can be applied to the XtreemFS
client. The current design of XtreemFS is based on a distributed set of services that
communicate with each other in order to handle data and metadata. These services
could be accessed through the Linux VFS interface or by means of a XtreemFS-
specific library.

On one hand, the VFS interface provides a uniform data access ensuring
filesystem semantics in Linux systems. Using this abstraction layer, applications
do not need to be aware about the real filesystem storing their data. They just
use the POSIX interface for every data access and VFS translates these requests to
real operations on the corresponding filesystem. As XtreemFS uses this aproach,
XtreemOS applications can access data without modifications. Details about real
behavior of the filesystem are hidden by the interface and transparency is totally
achieved with POSIX semantics. However, advanced features and innovations
which are not already included in POSIX will not be available due to portability
and backward compatibility reasons.

On the other hand, accessing XtreemFS services by means of a library brings
a whole set of possibilities and new functionalities. Applications could be linked
to this library making them able to directly set striping policies, replication char-
acteristics or volumes up. The drawback is that applications should be modified
for taking advantage of this new funcionality, forcing developers to be aware of
internals and semantics of the XtreemFS filesystem.

Since XtreemOS should be able to run legacy applications and standard Linux
ones, and XtreemFS should be available for all of them, implementing the VFS

XtreemOS–Integrated Project 22

IST-033576 D3.6.2

interface with POSIX semantics is totally justified. However, advanced features
and innovations will be available by a set of tools and libraries which XtreemOS
users and specific XtreemOS applications will be able to use.

4.3 Architecture and design

XtreemFS client is a component of the whole XtreemFS architecture, which pro-
vides data access to applications. It is responsible for managing communication to
the remaining XtreemFS components. In order to be able to process I/O requests
without too much delay, XtreemFS client is highly multi-threaded.

At loading time, XtreemFS client registers the filesystem as a FUSE filesystem.
Once loaded, filesystem operations coming from the FUSE module are processed
and finally translated into requests to the XtreemFS services. More concretely,
applications submit their I/O requests through the Linux glibc. glibc forwards
the incoming requests to the kernel VFS layer, that forwards it to the FUSE kernel
module. At this point, the FUSE user space library is involved and requests are
routed to the XtreemFS client, which will translate them to the proper ones for
other XtreemFS entities like MRC or OSD.

Figure 4.1: XtreemFS client structure

The requests from the FUSE library are processed in several stages. Incoming
requests are handled in the FileRW stage, which translates the I/O requests into file
object requests. Then the file object stage processes these requests translating them
into stripe object requests. Stripe object requests are handled by the stripe object
stage, which will finally generate the requests to the right OSDs, i.e. it chooses
which OSDs to talk to for a specific stripe object according to the striping policy.

XtreemOS–Integrated Project 23

IST-033576 D3.6.2

If there is an incoming request from the FUSE library that involves only meta-
data, the client talks to the MRC. In this case, there is an additional stage that
handles all detailed aspects of the MRC communication.

4.4 Specific modifications for Mobile Devices

XtreemFS client requires FUSE [3] to work. FUSE is a part of most modern Linux
kernels, which allows the integration of filesystems at user level. This is achieved
by a module of the kernel that should be loaded before mounting any filesystem
based on it. Therefore, in order to get XtreemFS client working, FUSE’s module
should be loaded and its utilities installed in the mobile device.

Secure communication is a requirement in mobile devices. Data will usually
be transmitted by wireless networks and it will potentially contain personal creden-
tials, permissions and confidential and private user data. For this reason, XtreemFS
uses SSL as transport layer, being OpenSSL [8] the chosen implementation of SSL
in XtreemFS.

Since XtreemFS is a distributed set of services, some protocols among them
had to be defined as well. These protocols have complex fields that require pars-
ing them before the requested operations begin. XtreemFS performs part of this
parsing using the JSON library for it.

Beyond dependencies with other software, there also exist specific issues to
mobile devices such as battery duration, available bandwidth, frequent disconnec-
tions and non-reliable networks, that XtreemFS client will have to face.

Some modifications to XtreemFS client are expected to improve the access
from mobile devices to XtreemFS. For instance, prefetching of data and persis-
tent caches will be basic modifications that could improve the existing features.
However, other advanced improvements such as exclusiveness of data accesses or
generation of hints about users and data location will be also considered in order
to reduce latencies and communication requirements.

Besides own optimizations of XtreemFS client for mobile devices, some opti-
mizations in the whole XtreemFS architecture could improve the mobility experi-
ence. They include processing of metadata sent from services to client for reducing
computation, requesting of data placement in neighbor nodes, request delegation
to proxies, adaptive encryption levels, non-permanent connections and addition of
checking, compression and recovery codes for data transmissions. All of them are
very advanced features that could improve the big set of current characteristics of
XtreemFS.

Regarding the internals of XtreemFS client, some portability issues have to be
solved before getting a usable XtreemOS-MD release. On one hand, atomic oper-
ations are platform dependent code that will have to be changed by the proper ones
for the ARM architecture. On the other hand, issues related to code optimization
of XtreemFS client’s internal libraries will also have to be solved.

XtreemOS–Integrated Project 24

IST-033576 D3.6.2

4.5 Interfaces

XtreemFS client provides a POSIX compliant interface for file access operations.
This interface transparently performs the communication to the remaining XtreemFS
components. Internally, XtreemFS client perfoms the connections to the distributed
services of XtreemFS (OSD, MRC and RMS) which are done via HTTP over SSL
for data transmission.

XtreemFS client also provides a set of utilities for volume management. Every
file stored in XtreemFS is stored in a volume. These utilities cover the function-
ality for creation, listing and deletion of volumes (mkvol, lsvol and rmvol
respectively).

In order to establish the mount point for XtreemFS, the xtreemfs command
is also provided. This command mounts XtreemFS in the mount point (path) spec-
ified by the users, allowing them to set some XtreemFS performance options up.

4.6 Examples of use

These are some examples of use of the XtreemFS client features. For more infor-
mation, please refer to deliverable D3.4.2 [16].

4.6.1 Creation of a volume

The creation of a volume is the first step that should be done prior to any other
XtreemFS operation. A volume is created with the mkvol command:

% mkvol -a 2 http://myhost:32636/MyVolume

This will create a volume called MyVolume in myhost (there is a Directory
Service listening in port 32636 in myhost)

4.6.2 Mounting XtreemFS

In order to perform any operation in XtreemFS, the filesystem should be mounted
in a mount point. This is done by the xtreemfs command:

% xtreemfs -o volume_url=http://myhost:32636/MyVolume,\
direct_io /mntpnt

This will mount the volume MyVolume stored in the host myhost on the
mount point mntpnt. The mount option specifies that it will be done with direct
input and output.

XtreemOS–Integrated Project 25

IST-033576 D3.6.2

4.6.3 Unmounting XtreemFS

Once every operation over XtreemFS was performed, users could want to unmount
the filesystem. This can be done with the command fusermount. This command is
an utility of FUSE package and allows unprivileged users to unmount FUSE-based
filesystems.

% fusermount -u /mntpnt

It will flush caches and unmount the mount point mntpnt.

4.6.4 Deletion of a volume

Volumes can be deleted with the rmvol command:

% rmvol http://myhost:32636/MyVolume

It will delete the volume called MyVolume stored in host myhost

XtreemOS–Integrated Project 26

Chapter 5

Application Execution (AEM
client)

A set of functionalities that is an almost definitive trait of any grid system, is the
ability to run and manage processes (or jobs) in remote nodes of the grid. More-
over, this need also appears in many of the use cases described in chapter 2, be
them grid-aware or grid-transparent (e.g. advanced voice recognition systems, etc)
ones.

Thus, a mobile grid user will most likely need some way to connect to XtreemOS
AEM service to launch, control and monitor the status of jobs.

5.1 Features and functionalities

As it can be derived from the use cases described in chapter 2 and deliverable
D3.6.1 [20], the job-related functionalities that mobile users are most likely to
need are:

• Full job management: launch, suspend (stop execution, leaving the job in
memory), resume, cancel (kill the job) and wait.

• A mechanism to monitor running jobs. Monitored information must in-
clude launch time, deemed time to end, status (running, suspended, await-
ing execution etc), resource consumption and special notifications.

• Implicitly, XtreemOS-MD nodes must identify themselves with the resource
management services as special nodes, which would mean a very limited
storage and computation capacity.

Of course, apart from these functional requirements, there are a number of non-
functional requirements that must be met by this (and any other) XtreemOS-MD
module, like reduced memory and disk footprint, computational efficiency, or
the ability to run in a limited executing environment (i.e. availability of certain
libraries or daemons).

27

IST-033576 D3.6.2

5.2 Design alternatives

XATI vs. XOSD To offer all the aforementioned services, there were two dif-
ferent options. The first (and probably simplest) one, was just to offer XATI, the
interface to contact the XOSD (the AEM daemon handling resources and jobs) that
can be located in any other XtreemOS node. With this interface we could build all
needed applications to submit jobs and check status of resources and jobs.

The second option would be to have a reduced version of this XOSD daemon
in the mobile device. In this case only some services should be part of the MD
version of the daemon: jScheduler and jController. The jScheduler
would allow to submit jobs and would put all scheduling and negotiation overhead
in the mobile device. The jController would take care of the jobs submitted
from this device (this service would have fault tolerance characteristics, and thus
residing in a MD would not be a technical problem).

But, since having the jController in the MD would pose several perfor-
mance problems, specially if the MD gets disconnected very frequently, and also
because of sheer runtime efficiency in the device, it has been decided that, at least
on a first phase, just the XATI woud reside on the mobile node, leaving the imple-
mentation of a customized XOSD for mobiles to a later phase, specially if more
execution-related features are deemed interesting.

The Java issue In the standard flavour of XtreemOS, job management tasks and
issues are managed by the Application Execution Management (AEM). Current
implementations of all the components of the AEM were written in Java, con-
cretely needing the version 6 of the SDK.

However, Java support in mobile devices using the ARM architecture is lagging
behind his PC counterpart: there is no official Sun JDK for this architecture, and
the support of open source alternatives (like, for example GNU classpath project
[1]) that have been ported to the ARM architecture do not even completely support
JDK version 1.5. Moreover, the mobile-specific J2ME flavour has some licensing
issues and does not provide with many of the standard JDK features, even on its
most complete profiles.

So, after considering a complete reworking of the XATI interface, it was de-
cided that it would be more efficient to have a C language implementation of
XATI, both in developing time and also in runtime. This C implementation, named
XATICA, was already expected in WP3.3 [2], and was provided by WP3.3 devel-
opers, to be ported and modified by WP3.6.

5.3 Architecture and design

As it is already detailed in deliverable D3.3.3/4 [2], the job-related requests from
clients are issued from through the XATI interface to the XOSD, a distributed fault-
tolerant daemon that resides in every XtreemOS computing node (see figure 5.1).

XtreemOS–Integrated Project 28

IST-033576 D3.6.2

Jobs are defined in a JSDL file that is stored either locally or in the XtreemFS; this
file will be read before launching, and the adequate call will be sent to the XOSD,
as it can be seen in figure 5.1:

Figure 5.1: The XATI interface to the AEM

Native communication with the XOSD is normally performed via Java objects,
but not all applications are written in Java. This is the reason why XATICA was
created: it is the C translation of XATI, making the communication with the XOSD
available through XML-formatted messages [2]. Application developers just have
to statically link with the library libXATICA.a and set the parameters of the config-
uration file XATICAConfig.conf to the correct values and the communication with
the XOSD is immediately available.

Although there is not a specific document describing XATI or XATICA yet,
the following main components can be identified from the source code:

XML wrapper and parser in order to exchange XML-formatted messages with
the XOSD. Associated files: XATICACommon.*, XATICAXMLParser.*.

Communication module to communicate with the XOSD via sockets. The com-
munication parameters are retrieved from the configuration file mentioned
above. Associated files: XATICACommunication.*, XATICAProperties.*.

CDA module that manages user certificates in order to communicate with the
CDA. Associated files: XCCDAMng.*.

Jobs execution module to execute jobs and get overall execution information.
Associated files: XCExecMng.*.

Job management module that allows to perform several operations over a con-
crete job. Associated files: XCJobMng.*.

Resource management to manage all the available resources. Associated files:
XCResMng.*.

XtreemOS–Integrated Project 29

IST-033576 D3.6.2

5.4 Specific modifications for Mobile Devices

Implementation Once a C implementation of the XATI interface was provided
by WP3.3, a series of preliminary tests were conducted on the Development En-
vironment of XtreemOS-MD (a QEMU-ARM emulator), to test its efficiency and
overall load on a more restricted ARM machine. These tests revealed that XATICA
(the name for this XATI C implementation) is lightweight enough to be run without
problems in a mobile device. Since it does not have any important library depen-
dencies either, we concluded that the XATI module will be included in XtreemOS-
MD virtually unmodified (except for any transversal, generic modifications such
as those described in chapter 7).

Command line utilities It is true that there is still missing some command line
utilities like the AEM console that is present in the Java version of the software,
although it is more likely to be used as testing utilities, rather than by real users,
due to the usability problems of command-line interfaces in mobile devices. These
utilities should be included anyway, and will have to be implemented either by
WP3.3 or by WP3.6.

Graphical user interface In the same direction, it would be most useful for real
mobile users to have a graphical interface application for managing (launching,
controlling and monitoring) jobs, using this XATI module. Luckily, such an appli-
cation is already being developed in WP4.2. This application has been labelled
JobMA (standing for Job Management Application, see D4.2.1 [12]), and will
probably be included in the official XtreemOS-MD distribution, once XATICA
is integrated into it.

5.5 Interfaces

5.5.1 Command line interface

This module should include some form of command line interface (e.g. a con-
sole application, like xconsole, the shell-like utility used in the Java version in
WP3.3) for sending requests to the AEM using XATICA. The interface for this
application could look like the following1:

Xsub -f <jobdefinition.jsdl>

Used for job submission. The xsub command creates and runs a job defined by a
JSDL file, waits until the job ID is returned and prints it onscreen.

1This is mostly taken from the Java version in deliverable D3.3.3/4 [2], and is reproduced here
for completeness.

XtreemOS–Integrated Project 30

IST-033576 D3.6.2

Xps -j <jobID>
Xps -a

Shows the info for the job with id jobID, or shows the info for all the submitted
jobs

Xwait <jobID>

Waits for the finalizations of a specific job specified by jobID

Xkill <event> <jobID>

Sends the specified event (currently UNIX signals) to the job specified by jobID

xrs -a
xrs -f <resourcerequirements.jsdl>

Shows all the resources available, or a list of available resources that fit into the
JSDL requirements

xrs
-cpu <architectureName>
-numcpu <cpuCountInterval>
-ghz <cpuSpeedIntervalGHz>
-os <osName>
-ram <RAMSizeIntervalGB>

Shows the list of resources that fit the query expressed in the command line. At
least one of cpu, numcpu, ghz, os or ram has to be provided. The values of
cpuCountInterval, cpuSpeedInterval and RAMSizeInterval can
be either a single value (e.g. 1.5) or an interval (e.g. 1.5-3).

xmonctr -node <address> -m
xmonctr -a

Shows the list of attributes (e.g. memory, CPU, disk usage etc) that are being
monitored at the specified node. The address has the form <IP>:<port>, and
the port can be obtained using the -a variant of the command.

xmonctr -node <address> -i

Shows the details on the node by listing the values of the monitored resource at-
tributes. The address has the form <IP>:<port>.

XtreemOS–Integrated Project 31

IST-033576 D3.6.2

5.5.2 Application programming interface (library)

The main usefulness of this module is to be linked from other applications (or
from other libraries like the XOSAGA connector, see chapter 6) so that they can
communicate with the AEM. The interface offered to applications should include
at least the following2:

int createJob(char* __jsdlFile,char __startJob,
char* __reservationID, char** returnValue);

Creates a job based on a job definition (jsdlFile parameter). If startJob is
true, the job is created and submitted for execution. Otherwise, it is only created.

int runJob(char* __jobId,char* __reservationID, int* returnValue);

Starts the execution of the jobId.

int jobControl(char* __jobId,int __ctrOp, int* returnValue);

Performs an operation (e.g. CANCEL) on the job.

int sendEvent(char* __jobId,int __signal,int __operation);

Send the specified event (currently, only UNIX signals) to the jobID.

int getJobsUser(char* __userId, char** returnValue);

Returns the list of jobIDs of jobs from a user existing in the system.

int getJobInfo(char* __jobId,int __flags,
char* __infoLevel, char** returnValue);

Returns the attributes associated with the jobID.

int getResources(char* __query,int __howMany, void* returnValue);

Returns the resources that match the provided resource query.

int getResInfo(void* returnValue);

Returns the information of the node. The returned value consists of the resource
attributes currently selected and their values.

int getResMetrics(void* returnValue);

Retrieves a list of the node’s attributes that are currently being monitored.
2This is very similar to the Java version in deliverable D3.3.3/4 [2], and has been taken from the

code of XATICA.

XtreemOS–Integrated Project 32

IST-033576 D3.6.2

5.6 Examples of use

5.6.1 Command-line utilities

As it has been already mentioned, a number of command-line utilities to interact
with the AEM should be shipped with XtreemOS-MD, even just for testing pur-
poses. An example interaction could be:

%vi example.jsdl
%xsub -f example.jsdl
801929a6-9ac1-4f1b-8c18-0267958a0a4a has been submitted
%xps -j 801929a6-9ac1-4f1b-8c18-0267958a0a4a

5.6.2 Graphic interface

Although a user application for managing jobs is outside the scope of WP3.6 (as
it is already being done with the JobMA application from WP4.2), using the pro-
gramming interface of the component described in this chapter, it should be possi-
ble to write graphic applications that could look like this one:

Figure 5.2: Example of graphic job management application

5.6.3 Application interface (API) usage

The functionality provided by the mobile version of XATICA is specifically de-
signed to be integrated in user applications (like the aforementioned JobMA). Here
we can see how the code of such an application could look like:

XtreemOS–Integrated Project 33

IST-033576 D3.6.2

#include <XCExecMng.h>
#include <XCJobMng.h>
#include <XCResMng.h>

int main (int argc, char **argv)
{

/* variable definition */
char *job_id; /* store job ID */
char *jsdl_file = "/home/xtreemos/myjob.jsdl";

/* file containing the job definition */
char *reservation_id = NULL; /* no reservations required */
char start_job = TRUE; /* start job once created */
int exit_value = 0; /* job’s exit value when finished */

/* job creation and starting */
createJob (jsdl_file, start_job, reservation_id, &job_id);

/* print job ID */
printf ("Job ID = %s\n", job_id);

/* immediately finish job */
exitJob (job_id, exit_value);

return 0;
}

XtreemOS–Integrated Project 34

Chapter 6

XOSAGA for Mobile Devices
(API)

Although it is not required explicitly by any of the use cases mentioned in chap-
ter 2, the XtreemOS implementation of OGF’s Simple API for Grid Applications
(XOSAGA, for short) is an important component of the overall XtreemOS archi-
tecture. This API, further described in WP3.1 [18], provides a common high-level
API for any grid application, regardless of the middleware or operating system that
lies beneath, be it Globus, gLite, XtreemOS, or any other for which there exists a
SAGA adaptor.

Thus, XOSAGA will provide any grid developer (in this case, mobile grid de-
veloper) with a way of coding portable grid client applications that will be able to
run, in this case, in a mobile device with the XtreemOS-MD OS.

6.1 Features and functionalities

The features that this “mobile XOSAGA” component must cover are basically the
implementation of the SAGA standard (or, more concretely, the portions of it that
provide client access to grid resources). According to the SAGA specification [10],
this includes:

Non-functional areas include

• security and session management
• permission management

• asynchronous operations
• monitoring
• asynchronous notifications
• attribute management

• I/O buffer management

35

IST-033576 D3.6.2

Functional areas include

• job submission and management

• management of namespaces

• file I/O

• replica management

• streaming

• remote procedure calls

• service discovery

• message exchange

• storage of application level information

• database access and integration

• checkpoint management and recovery

In the above list, italized text denotes optional functionalities from the point of
view of a mobile grid client like XtreemOS-MD basic version, derived from the
use cases detailed in D3.6.1 [20].

6.2 Design alternatives

SAGA-Java vs. SAGA-C++ implementation Currently there exist two refer-
ence implementations of the SAGA standard (which include not only the core
SAGA engine, but also some simple adaptors – see below), one in Java and an-
other one in C++.

At the beginning of the project the Java option seemed more attractive, since the
mobile applications from WP4.2 were going to be coded in Java, and also because
of Java’s natural coding ease. However, there are a number of facts that have made
us decide against this way in favor of its C++ counterpart:

• The Java reference implementation (as well as the development of the corre-
spondent SAGA adaptors for XtreemOS) seems to lag a bit behind the C++
code, which seems more stable and will be more timely released.

• The minimum requirements of the SAGA-Java implementation state that at
least JDK1.5 is needed but, as it has been already mentioned, the support for
this JDK in ARM architectures is only partial.

To sum up, the basic version of XtreemOS-G for mobile devices should include
a C++ implementation of the SAGA engine and XtreemOS adaptors, although we
do not preclude the inclusion of the Java version in the advanced version of the
distribution.

XtreemOS–Integrated Project 36

IST-033576 D3.6.2

6.3 Architecture and design

The internal architecture of the SAGA interface is better explained in WP3.1 de-
liverables [22, 18], but its general structure can be seen in figure 6.1:

Figure 6.1: SAGA architecture

As it can be seen in the figure, the SAGA API is composed of a core SAGA
engine, which contains all the common classes and interfaces, and offers what is
called the SAGA “look & feel”, a generic API that defines how application pro-
grammers will have to operate with the SAGA interface.

Apart from this non-functional features, SAGA comprises a number of sepa-
rated modules, called packages, which provide areas of functionality that grid ap-
plications normally need, like job management, data/file management etc. These
general functionalities are translated to the concrete APIs of the underlying grid
software (e.g. Globus Toolkit, or XtreemOS) by a number of grid implementation-
specific adaptors, which cover each of those areas of functionality. These specific
adaptors are bound to the application in runtime.

6.4 Specific modifications for Mobile Devices

Modifications for building in mobile environments In a first porting attempt to
a mobile device environment, a number of minor changes had to be made for the
SAGA engine to build successfully. It is also probable that additional changes will
be needed for the building and execution of the XtreemOS-specific SAGA adaptors
(which were still not available as of this writing).

XtreemOS–Integrated Project 37

IST-033576 D3.6.2

Unneeded packages and adaptors One of the most striking facts that have been
revealed during the first experiments with XOSAGA in mobile devices was its
important disk footprint (around 120 MB). Due to disk space restrictions on mobile
devices, it is very important to streamline the mobile XOSAGA installation. All
the unneeded SAGA adaptors (Globus GridFTP, GRAM, etc) which come with the
default installation of SAGA should be deleted in the mobile version.

In the same manner, since XtreemOS-MD does not necessarily implement the
functionality of all available SAGA packages, the uncovered functionality should
also be stripped down from this mobile version. The same applies for documenta-
tion, examples and any other material that is not strictly needed for runtime usage
of XOSAGA.

Modularization It is also very important for the mobile device version of XOSAGA
to take advantage of the modular properties of SAGA: since it is possible to divide
XtreemOS functionalities into groups that can be installed independently (see also
“On-demand installation” in chapter 7), the corresponding XOSAGA packages and
adaptors should also be separately installable, to save permanent storage space.

6.5 Interfaces

Since this component is in itself an API, this should be the most important section
of the chapter. However, since the API is very extensive, and is better explained in
other XtreemOS and OGF documentation [22, 18, 10], the reader is encouraged to
refer to those sources for information about XOSAGA’s interfaces.

6.6 Examples of use

Again, the reader is encouraged to refer to WP3.1 and SAGA’s documentation
[22, 18, 10] for detailed information on the usage of this API in applications. A
short snippet of application code is shown below, which copies a file from a source
location to a target location:

#include <string>
#include <saga/saga.hpp>
void copy_file(std::string source_url, std::string target_url)
{

try {
saga::file f(source_url);
f.copy(target_url);

} catch (saga::exception const &e) {
std::cerr << e.what() << std::endl;

}
}

XtreemOS–Integrated Project 38

Chapter 7

Other Enhancements for Mobile
Devices

Apart from the XtreemOS-specific modules described so far, there are still a num-
ber of additional modifications that could prove very useful for a grid operating
system like XtreemOS-MD, but do not relate specifically to other XtreemOS sys-
tem or feature.

These enhancements mostly relate to the special limitations that can be found
in a mobile device, ranging from a limited user interface (making command line
utilities mostly useless) to the difficulty of installing new software, or reduced disk
and memory capacities. To aid in coping with these handicaps, three additional
utilities have been designed:

On-the-fly installation of most XtreemOS grid services and modules. In order to
save disk space, only the bare minimum of functionality will be installed by
default, and additional XtreemOS functionality will be installed only when
needed.

On-demand startup of grid services and daemons. In order to save memory and
to make grid operations more transparent for mobile users, an XtreemOS
launcher/wrapper will be implemented, that takes care of starting all the
necessary processes and daemons (e.g. for obtaining a XOS-cert if none is
available). This also has the side benefit of allowing for faster device startup
times, as it is quite possible that grid functionality won’t be needed every
time the device is powered on.

Stopper applet that allows users to stop all grid functions once they are not needed
anymore, freeing up the device’s resources.

Taking into account that these modifications are not (or interact with) XtreemOS-
specific components, the structure of this chapter has been changed just to describe
their functionality and implementation. Moreover, many of the implementation

39

IST-033576 D3.6.2

details are very much reliant on the underlying Linux distribution. In our effort to
remain as portable among Linux distributions as possible, we will describe them in
the most flexible way, leaving the implementation details for following deliverables
(i.e. implementation stage of the modules).

7.1 On-the-fly installation

Functionality The scarcity of disk space is a very well known limitation of mo-
bile devices, that can be ameliorated by the usage of flash cards (CF, SD/MMC,
...). However, many mobile operating systems do not allow the installation of sys-
tem software in these cards. Thus, it is very important to optimize the usage of
permanent storage in the device.

A way of doing this is by deferring the installation of most XtreemOS com-
ponents until they are really needed. The idea is to have only a minimum core
installed by default in every device, and doing what we could call “just-in-time in-
stallation” of the needed XtreemOS components as they are called for. This kind of
behaviour would benefit greatly from some kind of launcher application that checks
the availability of the different XtreemOS modules and installs them if they’re not
present (see “on-demand startup”, below).

Optionally, an analogous mechanism can be devised for uninstalling the soft-
ware if it is not needed anymore (for example, if it has not been used for a prede-
termined lapse of time), to reclaim storage space.

Implementation One of the main drawbacks of mobile devices has been histori-
cally the “closedness” of their software, as mobile manufacturers are very reluctant
to let users tamper with the installed software, even in Linux-based devices1.

However, this trend is slowly receding, with the increasing presence of devices
that allow for user-installable software (e.g. Nokia tablets, OpenMoko project and,
to a certain extent, Google’s Android and Apple’s iPhone). Some of these devices
use in one way or the other the concept of virtual machine or virtualization, by
using Java or pseudo-Java VMs (Dalvik), while others leave it entirely open or use
standard Linux methods (e.g. administrative operation using sudo).

In XtreemOS-MD, following the philosophy of adopting Linux practices and
transparency, the latter approach is preferred, but this feature is bound to be de-
pendent on the underlying distribution and device’s policies. XtreemOS-MD
should offer at least an example of the auto-installation procedure for Ångström
(most probably using sudo or other application that has setuid permission). Op-
tionally, an analogous method can be supplied for other distributions like Nokia’s
Maemo.

In any case, this feature should be used from the “on-demand startup” module
(see below), that performs preliminary tasks before any grid operation takes place.

1In some cases, such as mobile phones, this is also due to legal reasons, because certain wireless
protocols should not be changed.

XtreemOS–Integrated Project 40

IST-033576 D3.6.2

7.2 On-demand startup

Functionality Another important limitation of this kind of mobile devices is the
amount of available RAM memory. Unlike the case of a typical desktop PC, the
addition of a number of daemons and processes on every device startup would
leave the device handicapped for normal operation (not only because of memory
usage, since more CPU would be used, and startup time would also increase).
Moreover, mobile devices are very often used for “personal” kinds of operations
(personal information management, calendar/agenda, note-taking, etc) instead of
“work” operations (like it could be working with grid resources), so those daemons
and processes are less likely to be useful in every user session.

In this scenario, it is readily apparent that a mechanism for starting those pro-
cesses just when they are needed would be very useful. This utility would be
executed previously to every grid operation, and it should check that the necessary
daemons have been started, and that the necessary data for grid operation (e.g. the
XtreemOS certificate) is present in the system. If not, this utility would take care
of starting them transparently.

Optionally, if the necessary software is not even installed, it would invoke the
installation of the software packages before trying to start any processes.

Implementation For the on-demand startup of grid services in the mobile device,
several implementation strategies could be followed. Probably the least intrusive
and most flexible way of doing it is by providing a XtreemOS-specific application
launcher (a kind of wrapper) that checks for the required processes, and starts them
if they are not running (or if the certificates for authentication are not available).
Optionally, this launcher can check for the installation of the necessary XtreemOS-
specific software, and install it on-demand if it is not available (see “on-demand
installation”, above).

For this implementation to be really useful, the installation process of any grid
application should include in its startup shortcut (e.g. in the main menu of the
graphical environment) a call to this launcher, for example:

startxtreemos mygridapp parameter1 parameter2 parameter3

7.3 Stopper applet

Functionality It is rather obvious that, if having the processes running from
startup is a waste of resources, having them running once grid operations are not
needed anymore will be equally wasteful. Thus, a way of stopping all these pro-
cesses and reclaiming their memory would be a very welcome addition to the op-
erating system.

As we will see in the next section, there are several ways of implementing
this, but the functionality is the same: to have a way of stopping all grid-related
functions, to go back to normal, PIM-like usage.

XtreemOS–Integrated Project 41

IST-033576 D3.6.2

Implementation For the task of stopping all XtreemOS activity in order to free
resources, a number of alternatives have been evaluated. The most transparent way
of doing it for users would be to automatically stop the processes when they are
not used for a certain period of time. However, the calibration of this timeout is
difficult, since mobile usage of the grid can vary wildly, and has not been studied
thoroughly so far.

On the contrary, for the basic version of XtreemOSMD, a more direct approach
has been taken. The user should state explicitly that he is not using the grid for
long period of time, thus stopping all the processes that are not needed anymore.
To make this scenario user-friendly, this should take the form of a graphical applet,
that can be seen at all times when the device is in “grid mode”, and that the user can
click to return to “non-grid mode”. The path for a more automatical solution is left
open until a more detailed knowledge of mobile grid usage patterns is available.

The concrete implementation of this applet would largely be dependent on
the desktop interface (not only user interface, but also programming interface)
that the operating system provides. Thus, XtreemOS-MD will develop an example
applet for the GPE (GPE Palmtop Environment) desktop available in Ångström
and, optionally, examples for other desktops like OPIE or Hildon (the one available
in Maemo).

XtreemOS–Integrated Project 42

Chapter 8

Conclusions

In this document we have reviewed the first, basic design of the components of
XtreemOS-G for mobile devices. As it was derived from previous deliverables
[20], the needed functionality of this layer shall include:

• A way of obtaining XtreemOS certificates (XOS-Cert) for user operation.
In XtreemOS, this functionality is provided by the Credential Distribution
Authority (CDA) client.

• A way of accessing, mounting and modifying grid files from a mobile device.
As XtreemOS provides the XtreemFS filesystem for grid data management,
the XtreemFS client should also be included.

• Mechanisms for launching, managing and monitoring jobs that are being
executed in the grid. In XtreemOS, this feature is offered through the Appli-
cation Execution Management (AEM) system, using XATI as the interface
for accessing it. Thus, an implementation of XATI should be included.

• A standard way for grid applications to access all the aforementioned func-
tionalities. XtreemOS will follow in this regard the Simple API for Grid
Applications standard proposed by OGF. Thus, an implementation of SAGA
has to be included in XtreemOS-MD.

The document has presented these software modules, alongside additional mod-
ifications that should be performed on them to make them more efficient and useful
in a mobile environment. Also, a number of usability and performance concerns
have been raised, and additional software components have been proposed to tackle
those concerns.

In these modifications, the XtreemOS-MD team has always tried to make the
modifications as generally applicable as possible, and thus it is expected that many
of these modifications will be applied also to other XtreemOS flavours (at least as
options), in order to obtain an even more streamlined grid operating system.

43

IST-033576 D3.6.2

It is also worth noting that, although the first prototypes of XtreemOS systems
are for the most part written in Java, in mobile devices this approach is not so
recommendable because of the limitations of mobile Java Virtual Machines, and
also because their use is not so widespread as in the PC world (with the exception
of the very limited J2ME version). Thus, the first version of all the aforementioned
components should be attempted in native languages like C/C++.

XtreemOS–Integrated Project 44

Chapter 9

Future Work

9.1 Next steps: implementation of XtreemOS-G for mo-
bile devices

After the design phase, the realization of this design has to be completed, building
on top of the implementation of the mobile version of the XtreemOS-F layer, and
integrating with all the other XtreemOS subsystems that populate the other flavours
of XtreemOS.

This implementation work has in fact already begun with the first pre-alpha
portings of the necessary modules to ARM architecture, which took place during
the writing of this document. From now on, the modifications to those modules
and the additional components proposed in this document will be developed. This
development, of course, will have to comply with the project-wide development
guidelines that have been defined, with regard to code quality, documentation, unit
testing etc.

In parallel, it is possible that these modifications are backported to the PC and
cluster flavours of the components, as many of them have a more general applica-
bility as ways of making the software more efficient and usable.

9.2 Research prospects

Also, during the design process, a number of ideas and research prospects have
been detected, and there are a number of advanced use cases that should be catered
for. These research paths will have to be evaluated in future deliverables, to as-
sess their feasibility, specially since the advanced version of XtreemOS is directed
towards an even more restrictive market: mobile phones.

These research paths can include:

• The ability to execute grid applications and jobs inside mobile devices, thus
providing their resources to the grid as any other node.

45

IST-033576 D3.6.2

• The inclusion of non-traditional grid resources, like specialized devices, con-
nectivity or users themselves, as shareable grid resources.

• The embedding of context information not only in mobile grid applications,
but in the whole framework of XtreemOS.

• The ability to manage virtual organizations from mobile devices.

• The ability to manage resources (add/remove, modify policies etc) from a
mobile device.

• The ability to move grid sessions and applications seamlessly among XtreemOS
machines and devices.

• The integration of grids and mobile ad-hoc networks.

• The execution of componentized applications in the XtreemOS grid, using
frontend components in mobile devices.

XtreemOS–Integrated Project 46

References

[1] GNU Classpath Project.
http://www.gnu.org/software/classpath/.

[2] XtreemOS Consortium. Merge of deliverables D3.3.3 (Basic services for
application submission, control and checkpointing) and D3.3.4 (Basic ser-
vice for resource selection, allocation and monitoring) - Deliverable Number
D3.3.3-4. Integrated Project, December 2007.

[3] Filesystem in Userspace.
http://fuse.sourceforge.net.

[4] Official GridLab web site.
http://www.gridlab.org/.

[5] Tao Guan, Ed Zaluska, and David De Roure. A grid service infrastructure
for mobile devices. In Proceedings of the First International Conference on
Semantics, Knowledge and Grid, page 42, 2005.

[6] Torben Knerr. Mobile Access to Grid Web Services, July 2006. Presentation
slides.
http://mobdev.tknerr.de/wp-content/uploads/2006/09/
mobilegridaccess.pdf.

[7] MyProxy Credential Management Framework (official site).
http://grid.ncsa.uiuc.edu/myproxy/ca/.

[8] OpenSSL: The Open Source toolkit for SSL/TLS.
http://www.openssl.org.

[9] The Single Unix Specification, version 3.
http://www.unix.org/version3.

[10] SAGA :: A Simple API for Grid Applications (SAGA official website).
http://saga.cct.lsu.edu/.

[11] XtreemOS Consortium. First Draft Specification of Programming Interfaces.
Integrated Project, December 2006.

47

http://www.gnu.org/software/classpath/
http://fuse.sourceforge.net
http://www.gridlab.org/
http://mobdev.tknerr.de/wp-content/uploads/2006/09/mobilegridaccess.pdf
http://mobdev.tknerr.de/wp-content/uploads/2006/09/mobilegridaccess.pdf
http://grid.ncsa.uiuc.edu/myproxy/ca/
http://www.openssl.org
http://www.unix.org/version3
http://saga.cct.lsu.edu/

IST-033576 D3.6.2

[12] XtreemOS Consortium. Requirements Capture and Use Case Scenarios
D4.2.1. Integrated Project, December 2006.

[13] XtreemOS Consortium. State-of-the-Art in trust and security for OS and
Grids D3.5.1. Integrated Project, December 2006.

[14] XtreemOS Consortium. The XtreemOS File System - Requirements and Ref-
erence Architecture D3.4.1. Integrated Project, December 2006.

[15] XtreemOS Consortium. Application References, Requirements, Use Cases
and Experiments D4.2.3. Integrated Project, July 2007.

[16] XtreemOS Consortium. Basic XtreemFS object-based file system and basic
Object Sharing Service D3.4.2. Integrated Project, December 2007.

[17] XtreemOS Consortium. Design of a Basic Linux Version for Mobile Devices
D2.3.3. Integrated Project, December 2007.

[18] XtreemOS Consortium. First Prototype of XtreemOS Runtime Engine
D3.1.3. Integrated Project, December 2007.

[19] XtreemOS Consortium. Implementation of the basic services for job submis-
sion, control and monitoring D3.3.3. Integrated Project, December 2007.

[20] XtreemOS Consortium. Requirements and Specification of Basic Services
for Mobile Devices D3.6.1. Integrated Project, December 2007.

[21] XtreemOS Consortium. Requirements and Specifications of a Basic Linux
Version for Mobile Devices D2.3.2. Integrated Project, June 2007.

[22] XtreemOS Consortium. Second draft specification of programming inter-
faces D3.1.1. Integrated Project, December 2007.

[23] XtreemOS Consortium. Second Draft Specification of XtreemOS Security
Services D3.5.4. Integrated Project, December 2007.

[24] XtreemOS Consortium. Security Services prototype month 18 D3.5.5. Inte-
grated Project, December 2007.

[25] XtreemOS Consortium. Virtual Organization Basic Requirements and Spec-
ifications for Mobile Devices D2.3.1. Integrated Project, February 2007.

[26] XtreemOS Consortium. Design Report for Advanced XtreemFS and OSS
Features D3.4.3. Integrated Project, June 2008.

[27] XtreemOS Consortium. Linux-XOS for MDs/PDA D2.3.4. Integrated
Project, June 2008.

XtreemOS–Integrated Project 48

Appendix A

Specification Lists

A.1 Software dependencies

This section includes a list of dependencies that have been already detected in the
design phase of XtreemOS-G layer for mobile devices. Only the packages that may
not be covered in a mobile Linux environment out-of-the-box are listed here.

A.1.1 Security client

As described in chapter 3, a client for obtaining XtreemOS certificates (XOS-Cert)
is needed in XtreemOS-MD.

The software dependencies of this module are:

• openssl 0.9.8

A.1.2 XtreemFS

As described in chapter 4, the only part of the XtreemFS needed in mobile devices
is the access layer, in order to access the files and mount XtreemFS volumes.

The XtreemFS client has the following dependencies: openssl-dev libxml2-dev
kernel-module-fuse fuse-utils libfuse-dev libfuse2

• openssl

• libxml2

• kernel-module-fuse

• fuse-utils

• libfuse2

49

IST-033576 D3.6.2

A.1.3 Application Execution Manager (AEM)

As described in chapter 5, the only part of the AEM needed in mobile devices
is the client, in order to access the remote server (daemon XOSD). This client is
XATICA, a XATI C implementation.

The only additional packages needed to build and use XATICA are:

• libxml2

A.1.4 XtreemOS API (XOSAGA)

As described in chapter 6, XtreemOS-MD needs an implementation of the SAGA
engine and adaptors for C++, in order for SAGA grid applications to be executed
in mobile devices.

The SAGA C++ engine has the following dependencies:

• g++

• libc6

• pkgconfig

• libboost 1.33

• sqlite3

• openssl

• xmlrpcpp

A.1.5 Additional components

Some dependencies that can be foreseen for the additional software components
described in chapter 7 include:

• xosmd-vosupport

• xos-nss-pam

XtreemOS–Integrated Project 50

