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Executive Summary

The architecture of XtreemFS as a parallel object-based file sys-
tem has been designed in a way that it can act as a platform that
enables the implementation of advanced features that solve problems
of cross-organization cross-site data management. Most of the planned
features cannot be found in today’s systems and require substantial
research effort.

In this report, we have investigate the requirements for these ad-
vanced features and provide a framework for the design. This evo-
lution of XtreemFS will be in the areas of replication mechanisms,
replica management, caching and storage. Furthermore, we concen-
trate on the evolution of our work in the Object Sharing Service (OSS)
and general quality and testing. In particular, the investigated areas
are:

• Replication Mechanisms. We provide an architectural frame-
work for implementing replica consistency mechanisms. We present
how the evolution steps of replication of read-only files and later
writable replicas will be designed. Our design allows us to sep-
arate logical replica creation from physical copying and thereby
create incomplete replicas, which we will also describe.

• Replica Management. Using these mechanisms, the Replica
Management Service (RMS) will automatically manage the cre-
ation and deletion of replicas and optimize their location in the
Grid. It will be able to reactively create replicas on demand and
create replicas proactively by following demand forecasts. For
these purposes, it will interact with the Application Execution
Management (AEM) of the XtreemOS installation.

• Client-Side Caching. While the current XtreemFS client al-
ready supports caching with NFS semantics, we plan to fur-
ther improve it towards POSIX compliance. Then it will be
able to provide a coherent file abstraction in presence of concur-
rent cached access from multiple client and on multiple storage
servers.

• Storage. We will further work on improving our IO perfor-
mance by investigating possible enhancements that allow us to
fully exploit the abilities of the underlying hardware. In particu-
lar, that means improving the concurrency of storage access and
adapting the optimal layout for the underlying local file system.

• Object Sharing Service. We plan to improve the scalability
of the OSS by using peer-to-peer technology as the underlying
communication substrate. Furthermore, we will investigate in
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detail the design of advanced transaction and memory manage-
ment mechanisms.
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1 Introduction

Since the beginning of the project, the members of the 3.4 work package have
not only concentrated to design and implement a fully-functional XtreemFS
file system and OSS, but also started to discuss the design of advanced fea-
tures. Most of these features are not commonly found in today’s Grid systems
and middleware; they will provide XtreemOS users with new opportunities
and will ease the use of Grid resources. These developments affect all parts
of XtreemFS and the Object Sharing Service (OSS):

1. The XtreemFS client will be enhanced with client-side caching mecha-
nisms that allow for high-performance I/O while ensuring data consis-
tency even in presence of concurrent accesses.

2. The design of the XtreemFS Object Storage Device (OSD) will be
refined for better performance.

3. The overall system architecture will be extended to be able to provide
file replication. This includes many changes in the OSD, but also in-
troduces a new component, the Replica Management System (RMS)
that will use the replication mechanism to automatically improve data
access.

4. The OSS will build on an overlay network and support advanced trans-
action and memory management mechanisms.

5. Also, WP3.4 will further be committed to providing quality software
and plans to refine its testing procedures.

2 Design of the XtreemFS Replication Mech-
anisms

Replication is an important feature in Grid Datamanagement; it increases the
failure tolerance of the Grid through higher data availability and it reduces
the load on WAN links by using local replicas which also reduces access times.

Many of today’s grid data management systems do file replication by copying
data to consumers and back to storage resources (e.g. [5]). While this helps
access performance and availability for write-once data, it leaves the task of
ensuring consistency of all the copies in face of changes to the user.
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For XtreemFS we will design a replication mechanism that is transparent to
the user. Applications can use XtreemFS just as any local file system; the
complexity of replication and data consistency is hidden from users. This
implies that replication in XtreemFS must allow files to be modified at any
time, only then do we get a real replicated file system. This allows us to
implement a replicated file system that can be used with legacy applications
and offers enhanced performance for advanced users.

XtreemFS will also support read-only replication as it is an important in-
termediate step in the evolution of XtreemFS’ design and allows higher per-
formance that many users can benefit from. Typical examples are HPC
applications that read input data and produce output files. In contrast to
grid data management systems, read-only replicas will be under full control
of XtreemFS and benefit from XtreemFS data dissemination mechanisms
and its support for incomplete replicas.

2.1 Replication Components

Both modes of replication are based on the same architecture. For each file
in XtreemFS exists a location list which contains all replicas and for each
replica, the list of OSDs the replica is stored on. This list is managed and
stored in the Metadata and Replica Catalog (MRC). When a client opens
a file it also retrieves the location list from the MRC. The client can then
access one of the OSDs from the list and work with the file. The client
also passes the list to the OSD which needs it in order to identify the other
OSDs holding a replica. The OSD is then able to manage the replication in
a transparent way, i.e. the client is not involved in the replication process.

2.2 Read-only Replication

In XtreemFS users have the option to declare a file finally read-only. If this
flag is set, the file system can easily keep multiple copies of the file. There is
no need to coordinate the replicas since they are immutable. The main chal-
lenges in this replication mode are the efficient transfer of file data and the
management of replicas. The latter is handled by the Replica Management
Service (RMS), described in Section 3. The efficient dissemination of data
has been extensively studied, e.g. [4]. We will evaluate existing strategies in
terms of suitability for XtreemFS. The object dissemination layer will man-
age the actual data transfer between OSDs and implement different strategies
suitable for read-only replicas as well as full replication.
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2.3 Full Replication

Replication of regular files must also allow a file to be modified. This means
that we need a mechanism to coordinate the updates and to guarantee the
consistency of replicas. Basically, this mechanism must ensure a total order
on the modifications which are then disseminated using the object dissemi-
nation layer described in the previous section.

2.3.1 Approaches to Replica Consistency Coordination

There are two schemes to create such a total order. Quorum based mecha-
nisms negotiate the total order by using e.g. distributed consensus protocols
among a subset of the replicas. These mechanisms are often resilient to host
and network failures but at the cost of many rounds of message exchange [8].
In contrast, the primary/secondary scheme relies on a single replica chosen
as primary. All modifications must be made at the primary which automat-
ically creates the total order. The primary then disseminates the updates
to the secondaries. As the primary is a single point of failure, an additional
fail-over mechanism is required.

A completely different approach was taken by OceanStore [11], Pangaea [14]
which relies on reconciliation of files when updates create conflicts. This
reconciliation, however, cannot be used in a general purpose file system as it
requires the file system to understand the contents of files.

2.3.2 Primary Failover with Leases in XtreemFS

In XtreemFS we will use the primary/secondary approach as it has better
performance [8] and is easier to implement and test than quorum approaches
[2]. This will constitute the replica consistency layer on top of the object
dissemination layer.

For the primary failover we use a distributed lease negotiation based on Paxos
to implement the primary failover layer. The details of this mechanism have
been published by ZIB and BSC [6]. While the implementation of the leases
mechanism is fairly complex, it is separated from the actual data replication.

Leases are a proved method to grant a process exclusive access to a resource
for a limited amount of time. In our setting, the resource is to be primary
replica for a specific file. Since the lease is only valid for a limited amount of
time, we do not need additional failure detectors.
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There are different situations which require another replica to take over the
primary role. Apart from a failure of the primary, it is possible that another
replica is close to the data consumers. Such a situation requires the ability
to hand over the primary role between replicas. Our leases mechanism is
designed to allow replicas to return a lease before it expires. This can be
used to implement such hand-over mechanisms.

To avoid a central lock service, we developed a lease negotiation mechanism
that is based on distributed consensus. This allows the replicas (more pre-
cisely the OSDs) to negotiate the lease among themselves. By using Paxos
which is based on quorums the algorithm can tolerate host and network fail-
ures as long as a majority of replicas is available. In addition to the better
failure tolerance, we also remove the bottleneck of centralized lock servers.
In [6] we demonstrate that the algorithm is able to handle high workloads,
i.e. concurrent requests, which makes it suitable for a file system.

Finally, the replica set management layer must ensure correct operation of
the underlying layers even when replicas are added or removed. Especially,
the primary failover layer is based on quorum decisions for which changes in
the participating replicas must be carefully coordinated. A solution for this
layer will be developed.

The layered architecture presented here makes the implementation and test-
ing considerably easier since each layer can be tested individually.

2.4 Incomplete Replicas

Many grid data management systems can only create complete replicas, i.e.
copy an entire file. This means that an application has to wait for the full file
to be transferred before it can continue operation. Moreover, the entire file
will be transferred even when an application needs only a few bytes. Those
two issues can lead to delayed application start-up or execution and a waste
of network bandwidth.

Since XtreemFS has full control over the replicas, it is possible to fetch only
those objects of a file which an application really needs. When a replica is
created it is initially empty but the application can instantly access the new
replica. Data is fetched as the application requests it.

These incomplete replicas can, however, pose a problem when replicas are
used to enhance availability and data safety. Therefore, XtreemFS will sup-
port different replica update policies which allow users to choose between
performance (incomplete replicas) and data safety (complete replicas).
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3 Design of the XtreemFS Replica Manage-
ment System (RMS)

3.1 Functionality

In this section we will describe the advanced functionality that will be offered
by the Replica Management System (RMS).

3.1.1 Choosing the best replica

One of the most important mechanisms in XtreemFS is the possibility to
have several replicas of a file distributed over the Grid. The problem appears
when a given client (or an OSD) has to access the file (which replica should
it access?). The client should be able to detect which replica will give the
better performance.

The idea to solve this problem is to build a virtual 2D or 3D space and lo-
cate all replicas, OSDs, and clients in it. The distance between two different
objects (i.e replica, OSD, or client) is an indicator of the distance (perfor-
mance wise) of these two objects. Once a client wants to access a file, it just
needs to compute the euclidian distance between itself and all replicas and
choose the closer one. As we will not have more than few tenths of replicas,
this computation should not be a significant overhead. In addition, if a given
replica becomes unavailable (i.e. the OSD holding it fails), the client can pick
the next best replica using the previously computed euclidian distance (it is
important to notice that this operation does not need any communication
between clients and RMS). If new replicas are added, the client will see them
once the capability is renewed and then it can decide to switch replicas by
computing again the euclidian distance of the new replicas.

In this process, we will need to study and evaluate what is the best metric to
make this 2D or 3D placement. Already existing software use round trip times
to compute distance, but we will evaluate if bandwidth or a combination of
both gets better results in our environment.

Another problem that needs to be solved is how to decide the distance of
a striped replica that is placed in several OSDs (thus different parts of the
file will have different distances to the client). We will try simple solution to
ease the task of selection a replica.
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3.1.2 Replica creation

Another important issue regarding replicas is to decide when and where to
create a replica. For this functionality we have three different mechanisms.
The first one is an explicit request from the user. In this scenario, the RMS
will not take any action. The second one is a reactive replica creation. The
system will detect that a replica is needed at a given location and will start a
replica creation. Finally, in the third case, the system will predict the usage
of a file in a location where no replicas are nearby and thus will try to create
the replica before it is used. We call to this third mechanism proactive replica
creation.

Reactive replica creation. In this scenario we will implement mechanisms
that detect when replicas are currently needed in other parts of the Grid.
Using the distance mechanisms we just described in Section 3.1.1, we will
detect if clients request a replica from large distances. In this case we will
try to decide a better location for a replica and create it.

Proactive replica creation. In this scenario we will try to learn the usage
of files to decide what files will be needed in the future (and where). To
perform this prediction we will use access tries as was done in previous work
by Kroeger [9, 10]. With this information we will try to create a replica in
close-by place. This will allow applications to find the files they may need in
a near OSD once they start running.

In both cases reactive and proactive, we will also study the access pattern of
files and use it to decide if only a part of the file needs to be replicated (partial
replication). This partial replicas will speedup the process of replication
because only part of the data will need to be copied to the new location.
Nevertheless if we miss-predict the parts of the replica that will be used, we
will always be able to populate the missing parts on-demand (done directly
by the OSDs).

Finally, we do not want to have an unlimited number of replicas and thus
each file will have a limit in the number of possible replicas (see Section
3.1.3). This means that all replication mechanisms will take this maximum
into account and never create more replicas than the ones allowed.

3.1.3 Automatic setting of the number of replicas

The problem of having many replicas is that updates imply that a coordi-
nation mechanisms has to be started. This coordination will reduce perfor-
mance and the magnitude clearly depends on the number of replicas available.
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For this reason we have decided to set a limit in the number of replicas a file
will have.

On the other hand, it is clear that the overhead this coordination will imply
also depend on the frequency at which files are modified. For instance, if a
file is only modified once a month (and only small modification are done) we
could keep many more replicas than for a file that is constantly modified.

The objective of this mechanism is to detect the access pattern of files and
find the ratio between reads and writes. With this information the RMS
will decide the maximum number of replicas that obtains a good tradeoff
between the benefit of multiple replicas in read operations and the penalty
of coordination in write operations.

3.1.4 Replica deletion

On the one hand, if we want to be able to replicate files whenever needed but
still maintain the maximum number for replica per file, it would be interest-
ing to keep the number of replicas a bit smaller that the maximum. This
difference between the maximum and the real number of replicas would allow
the system to create replicas whenever needed. On the other hand, if replicas
are not used, it would also be nice to have them removed automatically to
reduce disk usage in a give node and/or center.

To tackle these two issues we will implement a mechanism that automatically
deletes the less important replicas. To know what replicas are less important
we will use similar mechanisms than the ones used to create replicas. We will
predict future usage using the same kind of tries. In addition we will perform
some kind of preventive removal of replicas, which means that whenever a
node decides to remove a replica it will inform other OSDs that have it to
react accordingly.

3.1.5 Interaction with the Application Execution Management

The last mechanisms that we will implement to manage replicas consists of
an interaction with the application execution management system (AEM).
This interaction will be done in two steps.

In the first step, the AEM will ask which nodes from a list (the preselected
nodes before the scheduling step) are closer to a set of files. Once again,
XtreemFS will use the distance between files and clients described in Section
3.1.1 to answer this query to the AEM. At this step, it is important to realize
that the AEM will only check file closeness of a reduced set of nodes that
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have been previously selected by other characteristics, thus it will be frequent
that files needed are not close to the preselected nodes.

In the second step, the AEM will inform XtreemFS on the final destination
of a given job and the files it will use. With this information, the RMS will
decide if new replicas need to be created to improve the I/O performance of
this job. In addition, and in some cases, it might be that the RMS decides to
advance this step from the information obtained in step 1. For instance, this
may happen when the list is made of nodes that are close among themselves
and one or two replicas could do the job.

Although this mechanism is very good in the sense that no prediction needs
to be done, it has a couple of limitations. The first one is that the AEM
might not know the files used by a job (it is not a requirement in the job
description). The second one is that there might not be enough time from
the moment XtreemFS receives the execution location of a job (and the files
it uses) and the moment the job starts running. To solve these two cases we
have proposed the previous prediction mechanisms (3.1.2).

3.2 Design of the mechanisms needed

In order to implement the functionality the RMS will offer, we need to im-
plement a few general mechanisms. In this section we will describe the main
mechanisms, the integration in the XtreemFS architecture, and the way they
will be implemented to guarantee a very high level of scalability.

3.2.1 Building the 2D or 3D virtual space

In order to build a 2D or 3D virtual space we plan to use a mechanism
similar to Vivaldi [3]. Using this mechanism, each OSD or client just needs
to contact a few other members of the space. With the round trip time (or
any other metric we might evaluate), we find distance to these nodes and
then compute their real location in the 2D or 3D space.

We plan to use both special messages (to find the initial location) and regular
communication (to refine the location). It is important to notice that we do
not need a very accurate placement but something good enough to allow
the system to choose among available replicas. In addition, this constant
checking using regular communication will allow moving clients to always
have an updated position in the 2D or 3D space.

Finally, we will study what is the best option for our case: a 2D or a 3D
space.
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3.2.2 Gathering file access pattern

The information from the access pattern will be gathered in the OSDs and
with no coordination among other OSDs. Each OSD will keep track of both
the relationship among files (maintaining a trie as described in Section 3.1.2)
and the important information of the way each file is accessed (the granularity
of this information still needs to be decided).

As we want to have a more global view than what each OSD see by itself,
we will work on some kind of aggregation.

Regarding the relationship between files, we will propose a decoupled and
off-line aggregation of the tries. Once in a while (still to be determined),
OSDs will contact other OSDs (only a small subset) to exchange their trie
information and build an aggregated one that has the information of all. This
mechanism will allow all OSDs to have a more or less global view because
what is learned by one OSD will be propagated though several aggregations.
We have done some preliminary tests using this mechanism and seems to
work very well with environments of many thousands of nodes.

Regarding the information of the access pattern of files, in most cases the
information kept by a single OSD will be enough. Nevertheless, whenever we
need the full information of the pattern, we can contact all OSDs that have
a replica and aggregate the learned behavior. As we do not expect to keep
many replicas of a file, this procedure seems reasonable and scalable.

4 Design of the XtreemFS Client-Side Caching
mechanisms

XtreemFS is a distributed file system for Grid environments. As such, its
components can be linked over low-bandwidth links with possibly high la-
tency. File systems employ caching in order to improve performance in these
situations. Caching becomes even more relevant in a Grid context, even if –
like in XtreemFS – replicas are brought near the consumer. In this section
we will describe the design of client-side caching in the advanced version of
XtreemFS.

4.1 Problem Description

Client side caching is essential for the usability of the file system as a whole.
It must make sure that I/O requests of an application using XtreemFS are
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finished within a reasonable amount of time. The application must not be
delayed by I/O too long. It is also crucial that caching does not destroy the
consistency of the file system.

As a Grid file system XtreemFS can have a potentially large number of
clients. Some of these clients might also access the same file concurrently. So
if each client caches data these caches must be synchronized in order to keep
consistency of the whole file system. It is impossible for the clients to know of
each other because they might be located in different sites that are separated
by firewalls. So the clients cannot synchronize their caches among each other
and they need the server components of XtreemFS for that purpose.

4.2 Architecture

In XtreemFS, the client is the mediator between an application that uses the
file system and the XtreemFS servers, like MRC or OSDs. See fig. 1 for an
overview of the infrastructure in which the client operates.

Figure 1: Overview of the relevant parts of the XtreemFS architecture for
client side caching. I/O requests from an application are forwarded through
glibc, VFS and FUSE to the client and via the client to the XtreemFS servers.
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The application uses the libc library to communicate I/O requests to the
kernels virtual file system (VFS). The VFS distributes these requests to the
underlying file system. In the XtreemFS case this is the FUSE kernel part.
FUSE communicates with the FUSE user space library on which the client
is based. The client then handles the requests and employs the MRC or
OSD accordingly. The problem is then to keep the caches of several clients
consistent.

4.3 Design Proposal

The design of client side caching consists of several parts. One part is the
inter-operation with other parts of XtreemFS and another part is the design
of the cache within the client itself.

4.3.1 Inter-operation with Other Parts of XtreemFS

Due to the widely distributed architecture of XtreemFS it is not possible to
synchronize the clients caches each time an I/O operation occurs. This would
decrease I/O performance dramatically and contradict the design goals.

We base our design on the concept of leases. These leases allow a client
to keep its cache for a certain amount of time. If the client wants to keep
its cache longer than it has to renew the lease. There will be two kinds of
leases: leases for writing and leases for reading. If there are only clients that
want to read from a file, then there will be only read leases. Read requests
can be executed concurrently without any harm. Data consistency is only
threatened when data are changed by one of the clients.

Clients who want to cache data that they are likely to change must acquire a
write lease. This lease contains the right to read as well. Because XtreemFS
is an object-based file system this is necessary. The smallest possible unit
of data movement is a file object which contains data from an application
that is to be stored in the file system. The client caches will operate on this
file object granularity, too. Writing to parts of an object requires fetching
the whole object from the OSD. So the right to read is required for write
leases. Write leases will be exclusive for parts of a file that a client wants
to write to. This ensures that no two clients can have the same data cached
and modify them in a different way. File system consistency is not violated.
The locking mechanisms for file object locking must also make sure that
consistency among replicas is not violated.
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As clients do not know of each other, the OSDs have to synchronize the
leases among themselves. They must make sure that only one write-lease at
a time is issued to one client only. Requests for a read-lease will be blocked or
denied if a write-lease is issued. The client will transport information about
possible replica of a file that it has received from the MRC on file opening to
the OSDs. The OSDs can then use that information to synchronize access
to the replica as described in section 2.

4.3.2 Client Internal Cache Design

In order to serve a large number of applications concurrently the client is
heavily multi-threaded. FUSE supports this concept by providing a multi-
threaded interface to the client.

As stated above the client’s main role is a mediator between an application
and the XtreemFS infrastructure. As such it translates I/O requests from an
application into something suitable for XtreemFS. This translation is done
in several stages.

• File R/W stage This stage translates incoming application I/O re-
quests into requests for file objects. Application I/O has the form of
offset and length.

• File object stage This takes file object requests and translates them
into stripe object requests. XtreemFS is intended to support different
RAID levels and stripe objects are part of a stripe set according to a
given RAID level. File objects contain application data only. RAID
mechanisms create additional redundant information that allow a file
system to recover the application data if parts of a file are lost. This
stage creates the additional redundancy information.

• Stripe object stage This stages takes the stripe object requests and
initiates the actual data transfer to and from the OSDs.

XtreemFS is intended to deal with different RAID levels. Therefore it is
reasonable to cache stripe objects as part of a RAID stripe rather than file
objects that contain pure data only. The stripe object cache will be placed
between the (yet to be created) RAID stage and the actual stripe object
stage that fetches and stores stripe objects. The RAID stage will allow for
different RAID levels and eventually other data redundancy mechanism. It
will generalize creation of redundancy information and distribution of data
among OSDs that are incorporated into the file object stage right now.
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Figure 2: The new stripe object cache will be inserted between the file object
stage and the stripe object stage.

The stripe object cache takes care of maintaining local copies of stripe data
and takes also care of handling the leases. Only if it needs to involve OSDs is
the stripe object stage invoked. So the file object stage (and later the RAID
stage) only talks to the cache.

5 Design of the XtreemFS Advanced Storage
Stage

5.1 Introduction

In this section we will describe some advanced mechanisms of the OSD Stor-
age Stage, that we propose to study and implement, in order to improve its
functionality and performance. To do that, first we will give a brief intro-
duction by recalling the OSD Architecture and its components (including
the Storage Stage), then we will discuss some improvements and advanced
features that could be added to the current implemented solution.

5.2 The OSD Architecture

In order to give a self-contained document describing the file access function-
ality of XtreemFS, we want to give a brief preliminary introduction to the
whole OSD.

The OSD is a fundamental component of XtreemFS, and it is responsible
for storing file content. It relies on an event-driven architecture, composed

16



of stages, according to the SEDA approach [16]. The internal architecture is
depicted in Figure 3. The Parser Stage is responsible for parsing information
included in the request headers. The Authentication Stage checks signed ca-
pabilities. The Storage Stage is responsible for storing and managing objects;
for the sake of performance, the Storage Stage relies on caching that is used
for fast access to objects which are still in memory.

Q

Pinky Request Handler
client rq.

read/write

ack

Q

Authentication Stage

check capablity

Q

Parser Stage

parse capability, xlocations

Q

Speedy

Q

UDPCom

OSD

HDs
Q

Storage Stage

Figure 3: OSD internal design.

5.3 Storage Stage Improvements

The Storage Stage is a fundamental component of the whole OSD, and its
performance really affects the whole OSD performance.

In order to make the Storage Stage dispatching the requests as efficiently
as possible, in the following we describe some ideas that will be evaluated
in order to improve the Storage Stage performances and functionalities. We
divide them in two subsections. In the first, we analyze the way to make the
Storage Stage able to process more requests concurrently by describing how
a multi-threaded infrastructure could improve its performances in general.
In the second, we describe some approaches for extending the functionalities
of the StorageLayout, that defines how objects are stored on the physical
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storage device.

5.3.1 Multi-threaded

Besides the basic functionalities of the Storage Stage, concerning to the dis-
patching of requests and the way they are served out by the storage device,
a fundamental aspect that needs more investigation is how to improve its
performance. A multi-threaded infrastructure, that concurrently serves out
more requests, might give advantages in terms of performances and func-
tionalities. There are two main reasons that should make multi-threading
improving performances of the Storage Stage, thus of the whole OSD com-
ponent. The first reason is that, in a scenario contemplating more threads
dispatching requests concurrently, some requests could be served out by the
cache (with respect to the cache policy) and other requests could be served
out by the disk. It is clear that the first operation is much quicker than the
second. Therefore, meanwhile a request is dispatched by the disk (handling
an I/O operation), other requests can be dispatched by the cache. The cur-
rent prototype implements the single-threaded case, with only one running
thread taking care of dispatching requests. In this case, thus, the thread (the
request q has been assigned to) tries to serve out q by the cache and, if it can
not do that, sends it to the storage device and waits for its response. Since
there is just a single thread running for request dispatching, during this I/O
burst no other operations on the Storage Stage are performed.

In order to make the StorageStage able to concurrently process more requests,
we have to deal with two main issues. First, the creation of a thread pool
infrastructure, whose solution can be simply implemented by an array of
threads, i.e. numThreads, each one running and polling for the next request
to be processed (the assignment of the requests to the threads depends on
a dispatcher policy that needs to be designed). Second, and more complex,
the implementation of a suitable strategy for managing mutual exclusion in
accessing objects. This second aspect, that is a real case of the well-known
readers-writers scenario at the granularity of the single object, could be solved
in different ways, and in the following we will describe some of the feasible
strategies to do that. Our proposal is to investigate some (or all) of them,
and evaluate which one can be the most suitable for our purpose.

A first solution that could be adopted consists in using some software-based
locking mechanism provided by the development language. For example,
since the OSD (as the most of the XtreemFS components, excluding the
client) are actually developed in Java, a Lock instance can be used for locking

18



each data object (XtreemFS object) in reading or writing. In this case, the
idea consists in having a shared structure that contains an array of locks,
each one associated to each object currently accessed for reading or writing
operations. In this way, if any thread (executing a new request) has to
perform an operation on the object obj, its access is synchronized by the Lock
associated to obj. For example, if a new read request has to be dispatched,
and other read requests have been executing on the object, the Lock will
contemplate that the thread can execute its request concurrently with other
requests. If it can not (for example, because the object has been accessing
in writing), the thread will go in a wait state (handled by its Lock) until
its request can be dispatched (a fairness policy can be set for handling the
waking-up of the threads in a FIFO order). A possible drawback of this
solution consists in an additional CPU overhead due to the software structure
for lock allocation (in memory) and handling (CPU overhead). Indeed, we
should have as many Locks as the number of objects concurrently accessed,
and this could be a large value. An interesting aspect to be evaluated is how
much high this computational cost is.

However, it does support an optional fairness policy. When constructed as
fair, threads contend for entry using an approximately arrival-order policy.
When the write lock is released either the longest-waiting single writer will
be assigned the write lock, or if there is a reader waiting longer than any
writer, the set of readers will be assigned the read lock.

A second solution that could be adopted consists in distributing the requests
to threads with respect to their objNo. According to such a scenario, we have
a pool of threads running in background and waiting for the next request sent
to them. This solution contemplates that, as soon as a new request r (read
or write) has been received, the index of the thread that has to dispatch
the request is computed by an hash function applied to the objID. In this
way all the requests related to the same object are executed in sequence, by
naturally solving the synchronization problem. Advantages of this solution
are twofold: it solves the synchronization problem in a simple way and it
does not add extra computational overhead (for locking mechanisms, as seen
in the first case). Nevertheless, the drawback of this solution is that all the
requests concerned to the same object are not concurrently executed (because
they are assigned to the same thread, that executes them according a FIFO
policy). This is not a problem for the write requests (this is exactly what the
readers/writers scenario contemplates), but it could be a limitation for the
read requests. We are confident that this limitation should not slow down
the stage, also considering the fact that frequent requests are served out by
the cache. Anyway, this needs more detailed investigation.
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A third solution [12] that could be investigated consists in having only two
threads running, the first aimed at serving out just requests from the ker-
nel cache, and the second from the disk. This solution could speed up the
requests, but we still need to clarify some aspects more in detail. As an ad-
vanced variant of such a proposal, we could also use a pool of cache threads
and a pool of disk threads, in order to take benefit from the current multi-
core/multidisk infrastructures. Also this solution could be investigated.

A further issue to be investigated is the optimal setting of numThreads.
Obviously, it concerns the first two solutions, but not the third. The value
could affect the Storage Stage performance, because having both too many or
too little threads could degrade performances. It is very hard to fix the best
value a-priori, because the most suitable level of multi-threading depends on
the hardware properties of the device where the OSD is currently running
on (disk speed, number of disks, etc.). Our idea is to study some suitable
metrics that can suggest the optimal value at run-time, and dynamically
change it.

5.3.2 StorageLayout

The StorageLayout component is a sub-component that works as interface
between the Storage Stage and the storage device. In other words, it takes
care of mapping logical objects to physical objects stored on the disk. The
way objects are arranged on the local file system is an issue to be studied.
Actually, each file f is represented by a physical directory, and each object
(part of f) is represented by a physical file (storing its data content). In order
to avoid that the number of physical files in a directory becomes too large,
each directory in turn is arranged in a directory hierarchy, by means of hash
prefixes of their logical fileID. Indeed, we think that this is an acceptable
solution (in terms of efficiency and functionality), but we will look for other
solutions for optimizing the storage on disk. An idea could be to modify the
StorageLayout, by driving the allocation of objects contiguously on disk in
presence of an high intra-object locality of references (in order to reduce disk
seek overhead) [15].

6 Design of the XtreemFS Testing

Testing might not be considered as a feature of XtreemFS but is nevertheless
important. Indeed, extensive and regular testing is vital for any file system
to convince users of the code quality and the stability. Therefore, we created

20



a new task for WP3.4 which is focused on all aspects of testing. The goal of
this task is to evaluate, adapt and execute existing file system test suits.

We have already built an automatic nightly test system that runs a small set
of tests and file system benchmarks on a single machine. In the future, we
plan to create automatic test environments which can execute the tests on
several machines in clusters and over the Internet. Unfortunately, there are
no ready-made tools available for such testing scenarios which means that we
have to develop our own tools or extend existing distributed testing tools.

In addition to the testing environment, we have to evaluate the wide range
of existing file system tests. We plan to use tests from the POSIX test suite
of the Linux Kernel, stress tests from the Linux Testing Project (http://
www.ltp.org), the tests developed for the NTFS-3G (http://www.ntfs-3g.
org) Linux driver and standard file system benchmarking tools such as
IOZone (http://www.iozone.org), Bonnie (http://code.google.com/p/
bonnie-64/)or DBench (http://samba.org/ftp/tridge/dbench/). Most
of the tests are designed for local file system and need to be adapted for
XtreemFS.

Another set of tests will be implemented to validate the integration with the
other components of XtreemOS that XtreemFS interacts with. This includes
the security PAM module, SSL with XOS-Certificates and the Application
Execution Management (AEM).

7 Design of Advanced OSS Features

In this section, we will describe the advanced features that we plan to imple-
ment for the object sharing service (OSS), especially to support distributed
interactive multi-users applications such as Wissenheim (WP4.2).

7.1 Superpeer Overlay Network

In order to achieve scalability in the number of participating nodes, the nodes
participating in an OSS instance will organize themselves in a hierarchical
structure. So-called superpeers take additional responsibilities, such as high-
level memory allocation, transaction validation, and replica location. Super-
peers should have good network connections to the other nodes in the OSS
instance. Thus, we will use a latency measurement and latency estimation
subsystem for OSS similar to Vivaldi [3]. Shared object search among super-
peers may be optimized by implementing a DHT over the superpeers [13].
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We will consider interaction with WP 3.2 (Infrastructure for Service Scala-
bility and High Availability) and with the XtreemFS Replica Management
System. OSS instances will publish their presence either using XtreemFS or
the PubSub Service, so that joining nodes can find at least some peers.

7.2 Advanced Transactions

7.2.1 Transaction Monitor

A transaction monitoring facility will be implemented within superpeers. It
will be the base for adaptive optimizations and for programmers support.
The first includes replica tracking allowing commits with limited scope. For
example, if a peer commits it posts its write set to its assigned superpeer. If
the superpeer knows that all objects within the write set are not replicated
on peers subordinated to other superpeers, it can just perform a validation
among its assigned peers. Obviously, this optimization helps avoid unneces-
sary global commits if possible. Another aspect is to support the programmer
by providing statistic information, e.g. access patterns, conflicting transac-
tions, etc. This will help the programmer to simplify the identification of
conflicting transactions and to evaluate redefined transaction boundaries.
This iterative optimization process also benefits by the underlying validation
that always guarantees correctness (even if some transaction may scale poor).

7.2.2 Pipelined Transactions

In order to hide network latency, we will implement pipelined transactions
for OSS. As speculative transactions are validated at commit time, write sets
need to be propagated to participating peers. Depending on the network
latency, number of peers, and size of the write set, this validation phase can
get too long for interactive applications. Instead of waiting for the validation
result we prefer to start the next transaction. Although this can lead to
cascading aborts it is better than waiting. Of course it is not reasonable to
implement a lot of pipeline stages but this is anyway not necessary. Typically,
network latencies in wide area networks are around 500 ms. The execution
time of short transactions is 0.5 - 1s. Thus allowing one outstanding commit
per node will in most cases be sufficient to hide the typical wide area network
latency.
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7.2.3 Hierarchical Validation Among Superpeers

In the grid environment, peers involved into data sharing may be arranged
over long distances. The number of communication messages and the net-
work latency have an important impact on validation performance. We plan
to implement a validation among superpeers. A peer will not validate its
transactions itself but will delegate this task to its assigned superpeer.

7.2.4 Bounded Commit Propagation (Optional)

As an extension of the hierarchical validation protocol we plan optionally to
validate transactions only among a subset of peers. In order to accomplish
this, page requests will be monitored in the hierarchical overlay network by
the superpeers. The latter will allow to detect dependencies between hosted
object replicas on the peers and posted write sets of validating transactions.
Subsequently, the superpeers can decide if received write sets must be for-
warded to other superpeers and peers or not.

7.2.5 Transaction History Buffer

Validating and committing transactions automatically induce posting the
appropriate write sets to all other nodes (or to a subset). In some situations
(e.g. selective commits, network faults etc.) nodes can miss commits. This
could lead to data consistency violations, if these nodes commit their own
transactions afterwards. One solution would be to post write sets using
a reliable overlay multicast. Numerous efforts are described in literature
but to the present there is no ultimate solution. As reliable multicasts are
expensive and complex we do not want to implement them for speculative
transactions. We plan to use a logical time allowing a node that is about
to commit a transaction to detect if it has missed any previous transaction
from other peers. If yes, the peer has first to request all previous missed write
sets before being allowed to commit its own transactions. To handle requests
of missed write sets, all peers implement a transaction history buffer where
committed write sets will be stored. This buffer will be of limited space
thus allowing peers to recover within a certain time interval. If an on-the-
fly recovery is impossible, we will fall back to a checkpoint using the grid
checkpointing and restart service from WP3.3.
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7.3 Advanced Memory Management

7.3.1 Hierarchical Allocator

A concurrent object allocator must be synchronization-free in the common
case [1]. Therefore, we will implement a hierarchical allocator where alloca-
tions are satisfied at the lowest level possible. Nodes reserve chunks of free
storage for future allocations from their superpeer. A superpeer can donate
some of its free storage to another superpeer.

7.3.2 Support for Fine-grained Memory Allocations

The current allocator in OSS maps objects injectively onto memory pages.
The direct mapping is well suited for special applications that handle fine-
grained memory allocation themselves. However, an object allocator for fine-
grained allocations will simplify using the OSS and can additionally improve
object placement within memory. For example, objects should be placed
adjacently if their access pattern indicates temporal locality (true sharing),
and they should be placed on different logical memory pages if their access
pattern indicates accidental collisions (false sharing). If concurrent object
relocation is not supported by a programming environment the default al-
location scheme is one logical memory page per object [7]. Storing several
objects on one page needs to be declared by the programmer during memory
allocation.

7.3.3 False Sharing Control

If a lot of small objects are allocated on separate logical memory pages the
caching effect is lost, also in case of locality (true sharing). As the shar-
ing pattern changes over time, e.g. false sharing can turn into true sharing
and vice versa, it is necessary to implement an adaptive consistency unit
management. Therefore, subsequent object allocations that share a physical
memory page will belong to a single cache consistency unit (similar to the
situation if these objects would have been allocated on the same logical mem-
ory page). If conflicts are detected by the planned object access monitoring
facility, the false sharing control component can remove objects from this
consistency unit. A background task will examine scattered objects trying
to merge them again into a consistency unit to avoid loosing true sharing
over time for all object groups. We expect that the latter will be a very
challenging task.
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7.3.4 Transactional Object Allocator

As an advanced feature, we plan to make object allocations more convenient
for transactional applications by allowing allocations to occur during specu-
lative transactions. Allocations performed within a speculative transaction
must be undone in case the transaction aborts. It seems to be natural to
store object metadata within transactional memory.

8 Conclusion

In this report, we have described the design of features that will advance the
possibilities of XtreemFS and OSS. These new features will improve all parts
of the system, and help it to provide innovative features that are important
for its adoption.

In particular, XtreemFS will be the first file system that provides a real
replication mechanism, while not sacrificing any POSIX compliance. Fur-
thermore, its replication features can be used in a fully autonomous manner
and will be integrated with the rest of the XtreemOS infrastructure.

With its advanced client-side caching mechanisms and protocols, XtreemFS
will be allow high-performance access to file data event in presence of multi-
ple clients and storage server, again without sacrificing POSIX compliance.
The performance will complemented by a fast access to local storage on stor-
age servers that shall be able to exploit the capabilities of the underlying
hardware.

The Object Sharing Service will continue to advance its primitives for data
sharing between remote processes, and improve its scalability and memory
management mechanisms.
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