

Project no. IST-033576

XtreemOS

Integrated Project BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL OR-GANIZATIONS FOR NEXT GENERATION GRIDS

Training report and plan D5.2.3

Due date of report: May 31st, 2009 Actual submission date: March 22th, 2010 (re-submission)

Start date of project: June 1st 2006

Type: Deliverable WP number: 5.2

Name of responsible person: Michael SCHÖTTNER Editor & editor's address: Institution & address: Heinrich-Heine University Duesseldorf Universitaetsstr. 1 40225 Duesseldorf, Germany

Version 1.8 / Last edited by Michael Schöttner / Date: March 22th, 2010

	Project co-funded by the European Commission within the Sixth Framework Programme				
	Dissemination Level				
PU	Public	\checkmark			
PP	Restricted to other programme participants (including the Commission Services)				
RE	Restricted to a group specified by the consortium (including the Commission Services)				
CO	Confidential, only for members of the consortium (including the Commission Services)				

Keywords: Training.

Revision history:

Version	Date	Authors	Institution	Sections Affected / Comments
1.0	8/05/2009	Michael Schöttner	UDUS	First draft
1.1	12/05/2009	Sandrine L'Hermitte	INRIA	Extensions
1.2	12/05/2009	Michael Schöttner	UDUS	Polishing
1.3	13/05/2009	Sandrine L'Hermitte	INRIA	Some more extensions
1.4	12/06/2009	Michael Schöttner	UDUS	Integration of reviewer comments
1.5	26/08/2009	Michael Schöttner	UDUS	Integration of EC comments
1.6	26/08/2009	Sandrine L'Hermitte	INRIA	Extensions + polishing
1.7	27/08/2009	Michael Schöttner	UDUS	Final polishing
1.8	22/03/2010	Michael Schöttner	UDUS	Added training material

Reviewers

Alvaro Arenas (STFC) and Gregor Pipan (XLAB)

Tasks related to this deliverable

Task No.	Task description	Partners involved
T5.2.3	Training engineers and users	UDUS*, INRIA, STFC, CNR, BSC, ULM, VUA, XLAB, ZIB
T5.2.4	XtreemOS summer school	STFC*, INRIA, UDUS, CNR, BSC, ULM, VUA, XLAB, ZIB
T5.2.5	XtreemOS day for key players	XLAB*, INRIA, STFC, CNR, BSC, ULM, VUA, XLAB, ZIB, UDUS

* task leader

Table of Contents

Execu	ıtive Summary	4
1.	Introduction	5
2.	Training report	6
2.1	Internal training activities	6
2.2	External training activities	6
2.3	Preparation of the XtreemOS summer school	8
3.	Training plan	9
3.1	Training researchers and XtreemOS users (T5.2.3)	9
3.2	XtreemOS summer school (T5.2.4)	10
3.3	XtreemOS day for key players (T5.2.5, leader: XLAB)	12
4.	Conclusion	13

Appendix

- A. XtreemOS talk at Coregrid summer school
- B. XtreemOS tutorial at ICS09
- C. XtreemOS tutorial at INRIA/EDF/CEA joint summer school

Executive Summary

This deliverable provides a report on training activities of the third year of the project and is also a planning document for future activities during the last year of the project. This document is based on Annex 1 and the two previous training deliverables provided in D5.2.1 and D5.1.2 (updated annually).

Internal training activities, e.g. how to install and configure XreemOS were organized colocated with general technical meetings. External training activities include an XtreemOS contribution to the CoreGRID summer school, a security-related tutorial that has been given at the ICS 2009 conference, and a tutorial presented during a INRIA/EDF/CEA joint summer school. Finally, the XtreemOS summer school (September 2009) preparation has been started.

During the last year of the project, training activities will have to extend external training activities and reach external audiences with different profiles (users & developers) with training on the whole XtreemOS software stack. The first audience that will be targeted includes all related European ICT-/Grid-projects, the Linux and the Grid communities. One of the main external training events will be the XtreemOS summer school in September 2009.

Finally, key players from industry and research need to be "trained", too. The courses planned for this target audience shall give an overview and a clear insight into the commercially interesting know-how and benefits of XtreemOS (scheduled for spring 2010).

1. Introduction

The main goal of the WP5.2 in XtreemOS is the implementation of training activities for internal and external purposes.

Internal training targets primarily the project partners who require additional expertise on particular topics in order to ensure an effective and efficient design, implementation and integration of the different parts of the system.

In contrast, external training targets parties, which are not members of the consortium, but are interested in the topics related to the project. External training includes educational activities (e.g., contribution in summer schools and training programs and organization of the Xtree-mOS first summer school) for potential users and developers. Finally, decisions makers need to be "trained" too, in order to learn about potentially interesting commercial benefits of the XtreemOS technology.

2. Training report

2.1 Internal training activities

During the last general technical meeting in Amsterdam (March 23-27, 2009), several tutorials were given by XtreemOS members to other XtreemOS colleagues: theses internal trainings are essential to ensure a common understanding of the XtreemOS mechanisms and practises.

The first release of the system highlighted a need for a tutorial on how to install XtreemOS (installation and configuration procedures were difficult for inexperienced users and developers), on how to manage credentials in XtreemOS and on how to better understand the security API. Members from INRIA, XLAB and STFC organized these tutorials that were plenary sessions (targeting all project members).

Other tutorials were given on specific topics and focused specific WPs and/or developers.

Yvon Jégou (INRIA) gave a specific tutorial on the XtreemOS permanent testbed.

Nicolas Vigier and Antoine Giniès (EDGE) organized another tutorial about packaging for all the developers of the project. This tutorial was used for internal training.

It is also worth mentioning that EDGE had also previously visited different partners, e.g. CNR and STFC, training them on automated branching, testing and packaging scripts in the new SVN tree (December 2008).

2.2 External training activities

CoreGRID summer school

XtreemOS was presented at the CoreGRID summer school (7.7–11.7.2008) at Technische Universitaet Dortmund, Germany (webpage: <u>http://www.it.irf.uni-dortmund.de/IT/CoreGRID/index.php</u>). XtreemOS had a 45min. time slot and around 40 people attended the talk of Joerg Domaschka (ULM) entitled "Reliability and Availability in the XtreemOS Project". The slides of the presentation are available on the CoreGRID summer school webpage: <u>http://www.it.irf.uni-dortmund.de/IT/CoreGRID/talks/Domaschka.pdf</u> and attached in Appendix A.

Gridforum Netherlands

Christine Morin and Sylvain Jeuland (INRIA) gave a masterclass (including demo) at Vrije Universiteit Amsterdam in the framework of Gridforum Netherlands on October 23, 2008 (<u>http://isoc.nl/activ/2008-ChristineMorin.htm</u>). Around 55 persons (students, PhD, business etc.) attended this talk. The slides of the presentation by Christine Morin are available online: <u>http://isoc.nl/activ/2008-ChristineMorin.pdf</u>

ENVOL school

Furthermore, Christine Morin (INRIA) gave two talks on Kerrighed technology, which is leveraged in XtreemOS, during the school on dEveloppemeNt et la ValOrisation des Logiciels en environnement de recherche (ENVOL) organized by CNRS/PLUME, Annecy, France, October 2008. The audience was composed of software development managers and developers from research labs aiming at developing and promoting software developed in laboratories (namely in open source). Christine Morin took the opportunity to include some features of XtreemOS in the presentation (kDFS for instance).

Kiberpipa event

On April 14th 2008 XLAB made an XtreemOS training session in the Kiberpipa slot. Kiberpipa ('Cyberpipe') is a hacker space in Ljubljana, Slovenia, established in 2001 as a part of the K6/4 Institute. The hacker space operates as a cultural centre, computer laboratory and Internet café (with free wireless access). Kiberpipa engages primarily in open source programming and the recycling of computer devices. It organises workshops, lectures, and entertainment and information events. Marjan Šterk and Matej Artač presented the XtreemOS project and its goals, and demonstrated its usage from the perspective of a VO administrator, a resource administrator, and a VO user. The audience consisted of Linux users, who showed interest in the project's results. The video of the presentation (in Slovenian) is available on Kiperpipa's website (http://video.kiberpipa.org/media/POT_XtreemOS/play.html).

Tutorial at ICS'09 conference

Beyond the above-mentioned talks a tutorial proposal titled "Security and VO Management in Grids" was submitted at various conferences (SC'08, IPDPS 2008) and accepted at ICS'09 (23rd International Conference on Supercomputing) taking place in New York, USA, June 2009.

This tutorial provided an overview of security and Virtual Organization management in established and new Grid systems. We surveyed the security and Virtual Organization management features provided by some major Grid middleware packages, and introduced the comparable functionality in XtreemOS, a Grid-based operating system. The training material was prepared by Corina Stratan (VUA), Alvaro Arenas (STFC), Christine Morin (INRIA), Haiyan Yu (ICT) and Yvon Jégou (INRIA).

The content and schedule of this tutorial is as follows:

Grid security and VO Management: concepts and issues - 1 hour

- Concepts of user identity/authentication, authorization & access control to resources
- Challenges to Grid security
- Single-Sign On and Federation
- VO concepts and models

Security and VO management in the state-of-the-art Grid systems - 1 hour

- Globus authentication & Single-sign on, authorization, delegation, Community Authorization Service, plugins for VOMS
- gLite authentication, authorization, delegation, VOMS
- UNICORE clients and authentication Gateway
- VOMS Attribute Authority for UNICORE using SAML
- Security and VO management in XtreemOS

XtreemOS: a Grid-based Operating System – 1 hour

- XtreemOS objectives
- XtreemOS Foundation layer (credential storage via Key Retention Service, mention use of PAM)
- UID/GID mapping from VO attributes
- XtreemOS Grid layer Services and Applications
- Show a job submission workflow invoking XtreemOS services
- XtreemOS advantages
- XtreemOS roadmap for interoperability

This tutorial has been widely promoted and a dedicated webpage has been created on the project website: <u>http://www.xtreemos.eu/xtreemos-events</u>.

The slides are attached in Appendix B.

Other events

Sylvain Jeuland (INRIA) visited the Laboratoire Bordelais de Recherche en Informatique (LABRI) and gave a detailed presentation on XtreemOS and presented a demonstration of XtreemOS (Bordeaux, France, October 2008).

Furthermore, Christine Morin presented a tutorial about XtreemOS at the INRIA/EDF/CEA joint summer school, near Paris, June, 2009. The slides are attached in Appendix C.

2.3 Preparation of the XtreemOS summer school

The first XtreemOS summer school will take place in Oxford, UK in September 7-11, 2009. This is the major event for the third period of the project in terms of training. The goal of this summer school is to attract potential developers and users for the XtreemOS system. As a matter of fact summer schools target PhD students and master students who are good testers and could potentially become future developers and users of the technology.

The preparation of the XtreemOS summer school (planned for M40) has been initiated by Alvaro Arenas (STFC): room rental, contact of potential invited speakers, draft programme and topics to be addressed, grants etc.

The organising committee is composed of:

- Alvaro Arenas, STFC Rutherford Appleton Laboratory (Organisation chair)
- Christine Morin, INRIA Rennes Bretagne Atlantique (Scientific coordination)
- Sandrine L'Hermitte, INRIA Rennes Bretagne Atlantique (Administrative support)
- Benjamin Aziz, STFC Rutherford Appleton Laboratory (Local organisation)
- Ian Johnson, STFC Rutherford Appleton Laboratory (Local organisation)

Promotional actions also started and the call for participation was widely disseminated (See D5.1.8).

A webpage was created on the project website: <u>http://www.xtreemos.eu/xtreemos-events/xtreemos-summer-school-2009</u> where registration has been opened. A dedicated flyer was also created is also downloadable from this webpage (<u>http://www.xtreemos.eu/xtreemos-events/xtreemos-summer-school-2009/xtreemos-summer-school-2009-2/2009-06-23.8405986064/download</u>).

3. Training plan

All training activities will be coordinated with communication (WP5.1) and liaison activities (WP5.3).

3.1 Training researchers and XtreemOS users (T5.2.3)

The existing training material will be refined and extended depending on the XtreemOS members' needs. We will continue to organize internal training sessions whenever necessary.

During the last year of the project, T5.2.3 will have to extend to external training activities. The first audience that will be targeted includes all related European ICT-/Grid-projects, the Linux and the Grid communities in general. One of the main external training events will be the XtreemOS summer school, see Section 3.2.

Beyond training engineers and researchers this task will also provide training courses for external and internal users after the second software release. The different requirements of users will be addressed by specific training material. User training is planned to be co-located with training engineers, e.g. ¹/₂ day at the beginning of a training workshop and tutorials will also be submitted at international and national events (Supercomputing, ISC, ...).

An initial course portfolio on various aspects of XtreemOS will be developed from tutorial submissions to conferences (e.g. ISC'09) and contributions to other EU project summer schools.

The consortium will organize a ¹/₂ day XtreemOS summit at EuroPar09 in August 2009, in Delft, The Netherlands. This summit will include talks from the consortium and demonstration sessions and discussions and it will aim at attracting people from the external world (raising interest, showing the appeal of the XtreemOS technology, discussing about XtreemOS-related topics etc.).

Time	Subject	Speaker	Туре
14:30-15:00	Main objectives of XtreemOS	Thilo Kielmann Vrije universiteit Amsterdam, the Netherlands	Talk
15:00-15:30	L5:00-15:30 Security model Science and Technology Facilities Council, the United Kingdom		Talk
15:30-16:00 Resource matching		Guillaume Pierre Vrije Universiteit Amsterdam, the Netherlands	Talk
16:00-16:30	Coffee break		
16:30-17:00 Parallel IO and replication in XtreemFS		Björn Kolbeck Zuse Institute Berlin, Germany	Talk
17:00-17:45	Applications and demonstrations	Peter Linnell INRIA Rennes, France	Demonstratior
17:45-end	Open Q&A session	All	Discussion

The programme and schedule of this XtreemOS summit is the following:

3.2 XtreemOS summer school (T5.2.4)

The first XtreemOS summer school will take place in Oxford, UK in September 7-11, 2009.

The aims of the XtreemOS Summer School are:

- To introduce participants to emergent computing paradigms such as Grid computing and Cloud computing
- To provide lectures and practical courses on novel techniques to achieve scalability, highly availability and security in distributed systems
- To present Grid applications in the domains of E-science and business.
- To provide a forum for participants to discuss your research work and share experience with experience researchers.

The topics covered in the Summer School include:

- Introduction to Grids, Clouds, SOA and network-centric operating systems
- Grid programming interfaces
- VO Management and security
- Distributed data management
- Application execution management
- Scalability
- Grid Checkpointing

Both internal and external speakers will make lectures. The following external speakers have been invited:

- Paolo Costa, Microsoft Research Cambridge, UK
- Kate Keahey, Argonne National Laboratory, USA
- Cedric Le Goater, IBM, France
- Kathrin Peter, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Germany
- David Wallom, Oxford e-Research Centre, UK

Some XtreemOS members will also actively take part in the lectures:

- Christine Morin, INRIA Rennes-Bretagne Atlantique, France
- Tony Cortes, Barcelona Supercomputing Center, Spain
- Thilo Kielmann, Vrije Universiteit Amsterdam, The Netherlands
- Massimo Coppola, ISTI-CNR, Italy
- Bjorn Kolbeck, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Germany
- John Mehnert-Spahn, Heinrich-Heine Universitaet Duesseldorf, Germany
- Alvaro Arenas, STFC Rutherford Appleton Laboratory, UK

A preliminary program is available, as shown hereafter:

			mmer School 2009 ord University, Oxford,	UK		
	Monday	Tuesday	Wednesday	Thursday	Friday	
Time	September 7	September 8	September 9	September 10	September 11	
09:00 - 10:30	Arrival of Participants	VO Management and Security Alvaro Arenas, STFC	Data Management in D- Grid Community Projects Kathrin Peter, ZIB	Invited Speaker Paolo Costa, MSR Cambridge	Grid Checkpointing John Mehnert-Spahn, U Dusseldorf	
			XtreemFS – A Distributed and	Highly Scalable Services	Distributed State Game Management	
			Replicated File System Bjorn Kolbeck, ZIB	Massimo Coppola, CNR	Michael Sonnenfroh, U. Dusseldorf	
10:30 - 11:00			Coffee Break			
11:00 - 12:30		Grid Programming	Practical on XtreemFS	Virtual Nodes	Invited speaker	
		Interface – SAGA	Bjorn Kolbeck, ZIB	Jorg Domaschka, ULM	Cedric Le Goater, IBM	
		Thilo Kielmann, VUA	VUA	Practical on Highly Scalable Services		
				Massimo Coppola, CNR		
13:00 - 14:00			Lunch Break	· · · · · · · · · · · · · · · · · · ·		
14:00 - 15:30	Invited speaker Kate Keahey, Argonne	Practical on Grid Programming Interface	Application Execution Management	Doctoral symposium	Departure of	
	Lab	Thilo Kielmann, VUA	Toni Cortes, BSC		Participants	
15:30 - 16:00		Coffee Break			-	
16:00 – 17:30	Introduction to Grids, SOA, and network- centric OS	Invited speaker David Wallom, Oxford e-	Practical on Application Execution Management	Continuation Doctoral symposium		
	Christine Morin, INRIA	Research Centre	Toni Cortes, BSC			
19:00 -		Welcome reception, including poster session and project demos		XSS Dinner		

3.3 XtreemOS day for key players (T5.2.5, leader: XLAB)

The governing board decided to move this event to spring 2010. The major goal of this workshop is to raise awareness of XtreemOS to key players in the fields of grid systems, Linux, and operating systems and to demonstrate the value of our "products" (XtreemOS system and stand-alone components). The majority of participants of this workshop will be invited-only. It is planned to co-locate this XtreemOS major event with another major ICT fair/event and to invite decision makers. We also aim to produce a small book at the end of this workshop.

The workshop material content will partially emerge from the XtreemOS exploitation plans (WP5.1) and demo scenarios (WP4.4).

4. Conclusion

During the past year our external training activities have mostly targeted academic people (summer school participants, master class...) who can be seen as potential developers and users of the XtreemOS systems. The main training activity of the third year was the preparation of the first XtreemOS summer school.

During the last year of the project, we will focus on business key players and try to attract users and developers for the XtreemOS system and software components. The major events of the last year will be the XtreemOS summer school and the XtreemOS day for key players. XtreemOS members will in parallel continue to submit tutorials to summer schools and scientific conferences.

Appendix

A. XtreemOS talk at Coregrid summer school

The summer school was held in Dortmund, Germany, July, 2009.

Availability and Reliability in the XtreemOS Project

Jörg Domaschka | joerg.domaschka@uni-ulm.de | 11 July 2008 Institute of Distributed Systems | Ulm University

Christian Spann, Franz J. Hauck Aspectix Research Team Institute of Distributed Systems Ulm University Germany Jeff Napper, Guillaume Pierre, Maarten van Steen Computer Systems Department Vrije Universiteit Amsterdam The Netherlands

Rüdiger Kapitza Informatik 4 University Erlangen Germany Michal Szymaniak Google Research

USA

Hans P. Reiser LASIGE University of Lisbon Portugal

Overview:

- Eurpean project: 17 partners
- Investigate grid support in operating systems
- Personal computers, clusters, mobile devices

Overview:

Page 2/37

- Eurpean project: 17 partners
- Investigate grid support in operating systems
- Personal computers, clusters, mobile devices

Targeting large peer-to-peer grids

- Off-the-shelf computers
- Connected via the Internet
- No central infrastructure, fully decentralised
- Churn, unreliable nodes

Overview:

Page 2/37

- Eurpean project: 17 partners
- Investigate grid support in operating systems
- Personal computers, clusters, mobile devices

Targeting large peer-to-peer grids

- Off-the-shelf computers
- Connected via the Internet
- No central infrastructure, fully decentralised
- Churn, unreliable nodes

Unreliable environment

Need for reliable services (e.g. security, monitoring, ...)

Overview:

Page 2/37

- Eurpean project: 17 partners
- Investigate grid support in operating systems
- Personal computers, clusters, mobile devices

Targeting large peer-to-peer grids

- Off-the-shelf computers
- Connected via the Internet
- No central infrastructure, fully decentralised
- Churn, unreliable nodes

Unreliable environment \Rightarrow ? \Leftarrow

Need for reliable services (e.g. security, monitoring, ...)

Questions to answer

▶ How can reliability be achieved?

Snapshots:

- Save state of application from time to time
- In case of failures: load snapshot

Page 4/37

Snapshots:

- Save state of application from time to time
- ► In case of failures: load snapshot

But:

- ▶ Application may be composed of 100s (1000s) of processes
 - Snapshotting requires coordination, communication
 - \Rightarrow Nothing is for free

Page 4/37

Snapshots:

- Save state of application from time to time
- In case of failures: load snapshot

But:

- ▶ Application may be composed of 100s (1000s) of processes
 - Snapshotting requires coordination, communication
 - \Rightarrow Nothing is for free
- User may experience downtime
 - Bad for login or security services
 - \Rightarrow Reliability \neq Availability

Page 4/37

Snapshots:

- Save state of application from time to time
- In case of failures: load snapshot

But:

- ▶ Application may be composed of 100s (1000s) of processes
 - Snapshotting requires coordination, communication
 - \Rightarrow Nothing is for free
- User may experience downtime
 - Bad for login or security services
 - \Rightarrow Reliability \neq Availability
- What entity monitors the application?
 - Has to be reliable and available
 - Has to be distributed
 - $\Rightarrow \mathsf{Self}\text{-}\mathsf{containment}$

Questions to answer

▶ How can reliability be increased?

Questions to answer

- How can reliability be increased?
- How can availability be increased?
- Is there a self-contained solution?

Availability

Replication:

- Availability by redundancy
- Provide identical entities at multiple sites
- Contains snapshots as special case
- Consistency protocol ensures reliability

Outline

Motivation

Replication - An Introduction

Virtual Nodes

Distributed Servers

Integration

Conclusion

What to replicate?

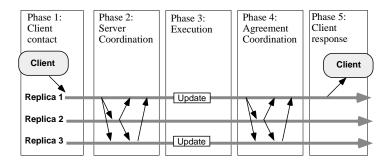
- Data
- Database
- Computing task
- Object
- Service

What to replicate?

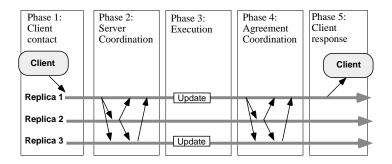
- Data
- Database
- Computing task
- Object
- Service
- \Rightarrow Sophisticated algorithms for all fields \ldots

What to replicate?

- Data
- Database
- Computing task
- Object
- Service
- \Rightarrow Sophisticated algorithms for all fields \ldots
- $\Rightarrow \dots$ and a general model


General Replication Model

5 Phases


Page 9/37

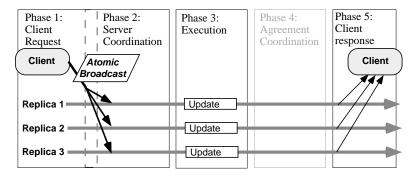
- 1. Request: client submits operation
- Server coordination: synchronize the execution (e.g., message ordering)
- Execution: operation is executed (by one or more replicas)
- 4. Agreement coordination: result of the operation (e.g., guarantee atomicity)
- 5. Response: send outcome back to client

General Replication Model

General Replication Model

Replication protocol:

- Decides on the use of a phase
- Different approaches per phase
- Different demands to the code

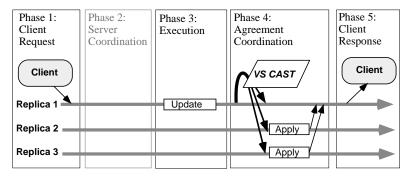

Classification

Active replication:

- State-machine replication
- Decentralised approach
- Request processed by all replicas
- Simple due to symmetry
- Quick reaction to failures
- Demanding with respect to determinism
 - Message ordering
 - Execution order

Classification

Active replication:


Classification

Passive replication:

- Primary backup replication
- Centralised approach
- Request processed by a single replica (primary)
- New state/state changes transferred to backups
- Failure of primary requires re-election
- Can handle nondeterminism (sometimes)

Classification

Passive replication:

Outline

Motivation

Replication - An Introduction

Virtual Nodes Overview Deterministic Scheduling Client Transparency

Distributed Servers

Integration

Conclusion

Environment

What to replicate?

- Data
- Database
- Computing task
- Object/Service

Environment

What to replicate?

- Data
- Database
- Computing task
- Object/Service

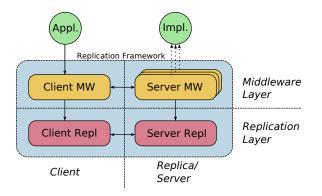
Why Objects and Services?

"Can't you just use databases?"

- Many applications do not need stable storage
- Uniform programming model
- Support for legacy applications

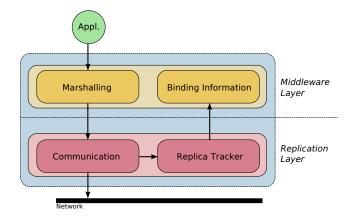
Virtual Nodes: XtreemOS Approach to Reliability

Replication Framework

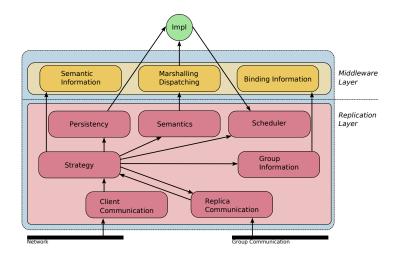

- Java-based
- Support for changing replica groups
- Multiple replication protocols
- ▶ Multiple middleware interfaces (CORBA, J-RMI, SOAP, ...)
- Support for nested invocations (SOA)
- Optimization for *read-only* invocations
- Support for deterministic multithreading
- Self-contained: independent of other nodes and services
- Service implementation orthogonal to replication

Virtual Nodes: XtreemOS Approach to Reliability

Replication Framework


- Java-based
- Support for changing replica groups
- Multiple replication protocols
- ▶ Multiple middleware interfaces (CORBA, J-RMI, SOAP, ...)
- Support for nested invocations (SOA)
- Optimization for *read-only* invocations
- Support for deterministic multithreading
- Self-contained: independent of other nodes and services
- Service implementation orthogonal to replication
 - Except for non-deterministic methods
 - Except for state transfer
 - ▶ ...

Architecture: Overview



Page 19/37 Availability and Reliability in the XtreemOS Project | Ulm University | J. Domaschka | 2008-11-11

Architecture: Client-side

Architecture: Server-side

Deterministic Scheduling

Active Replication Requires Determinism

- Multithreading is non-deterministic
- Single-threaded execution
 - Slow and dead-lock prone
 - Denies use of condition variables (wait, notify)
 - Does not make use of multi-core architectures

Deterministic Scheduling

Active Replication Requires Determinism

- Multithreading is non-deterministic
- Single-threaded execution
 - Slow and dead-lock prone
 - Denies use of condition variables (wait, notify)
 - Does not make use of multi-core architectures

Deterministic Multithreading

- Deterministic thread switching: limited concurrency
- Four algorithms with different properties
 - Single active thread (SAT, Reiser et al.)
 - Multiple active threads (MAT, Reiser et al.)
 - Lose synchronization algorithm (LSA, Basile et al.)
 - Preemptive deterministic scheduling (PDS, Basile et al.)

Deterministic Scheduling

Active Replication Requires Determinism

- Multithreading is non-deterministic
- Single-threaded execution
 - Slow and dead-lock prone
 - Denies use of condition variables (wait, notify)
 - Does not make use of multi-core architectures

Deterministic Multithreading

- Deterministic thread switching: limited concurrency
- Four algorithms with different properties
 - Single active thread (SAT, Reiser et al.)
 - Multiple active threads (MAT, Reiser et al.)
 - Lose synchronization algorithm (LSA, Basile et al.)
 - Preemptive deterministic scheduling (PDS, Basile et al.)
- No one-size-fits-all solution

Scheduler Integration

Intercept Java Synchronisation Statements:

- synchronized methods and blocks
 - synchronized instance methods
 - synchronized static methods
 - synchronized blocks

wait(), notify(), and notifyAll() calls

Scheduler Integration

Intercept Java Synchronisation Statements:

- synchronized methods and blocks
 - synchronized instance methods
 - synchronized static methods
 - synchronized blocks

wait(), notify(), and notifyAll() calls

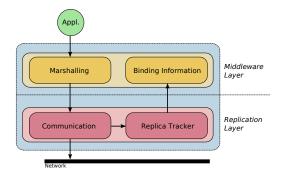
Interception: Replace Statements by Calls to Scheduler

- synchronized: pair of lock/unlock invocations
- All other: simple replacement
- On source code or byte code level
- Transparent to service developer
- Appropriate also for legacy applications

Interception by Code Transformation

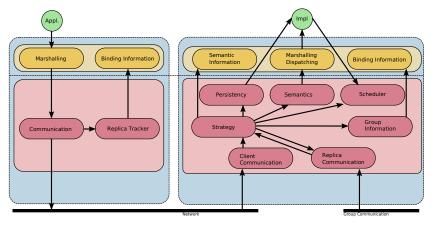
```
public class Queue extends ... {
    public synchronized
        String remove()
    {
        while(data.size()==0)
            wait():
        return data.remove(0);
    }
```

```
public synchronized
     void append(String x)
{
     data.add(x);
     notify();
}
```

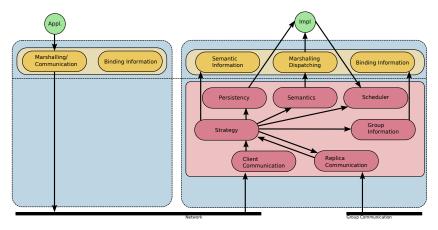

}

Interception by Code Transformation

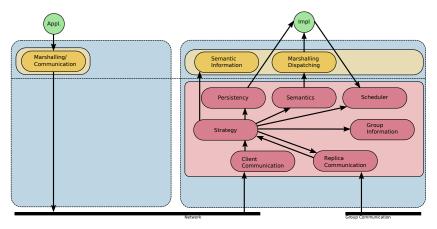
```
public class Queue extends ... {
    public synchronized
             String remove()
        while (data. size () = = 0)
              wait():
        return data.remove(0);
                                       \Rightarrow
    public synchronized
        void append(String x)
    ł
        data.add(x);
        notify();
```

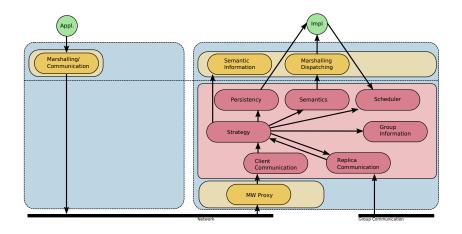

```
public class Queue extends ... {
    public String remove() {
        _scheduler().lock(this);
        try {
             while(data.size()==0)
                 _scheduler()._wait(this);
             return data.remove(0);
          finally {
             _scheduler().unlock(this);
    public void append(String x) {
        _scheduler().lock(this);
        try {
             data.add(x);
             _scheduler()._notify(this);
          finally {
             _scheduler().unlock(this);
    }
```

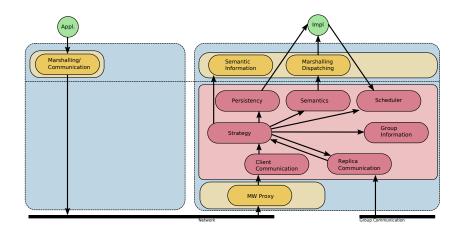
Client Transparency



- Client has to install additional software
- Application developer has to be aware of replication
- Violates the goal of transparency


Remove Replica Layer




Remove Binding Information

Add Middleware Proxy

"How do clients keep track of service location?"

Replica Tracking

Use a location service?

How is the location service being tracked?

Replica Tracking

Use a location service?

How is the location service being tracked?

Use client-side daemon?

- Will work most of the time
- Still no guarantee
- Additional traffic due to pulling
- No fix address: initial contact difficult

Replica Tracking

Use a location service?

How is the location service being tracked?

Use client-side daemon?

- Will work most of the time
- Still no guarantee
- Additional traffic due to pulling
- No fix address: initial contact difficult

Our Approach: Exploit Mobile IPv6

- Uses standardized techniques
- Does not require any modifications at client side

Outline

Motivation

Replication - An Introduction

Virtual Nodes

Distributed Servers Excursus: Mobile IPv6 How Things Work

Integration

Conclusion

Mobile nodes reachable while away from home networks

Correspondent node (CN): any node talking to mobile node

Mobile nodes reachable while away from home networks

Correspondent node (CN): any node talking to mobile node

Mobile Node: Two Addresses

- ▶ Home address (HoA): identifies mobile node, never changes
- Careof address (CoA): represents mobile node's current location

Mobile nodes reachable while away from home networks

Correspondent node (CN): any node talking to mobile node

Mobile Node: Two Addresses

- Home address (HoA): identifies mobile node, never changes
- Careof address (CoA): represents mobile node's current location

Transparency for High-level Protocols:

- Mobile nodes addressed by HoA
- IP-level translates HoA to CoA
- Location changes are annouced by the mobile node

Mobile nodes reachable while away from home networks

Correspondent node (CN): any node talking to mobile node

Mobile Node: Two Addresses

- Home address (HoA): identifies mobile node, never changes
- Careof address (CoA): represents mobile node's current location

Transparency for High-level Protocols:

- Mobile nodes addressed by HoA
- IP-level translates HoA to CoA
- Location changes are annouced by the mobile node

"Sounds nice, but how does the IP-level know?"

Home Agent (HA)

- Router in home network
- Mobile node informs HA about CoA
- Knows mapping from HoA to CoA

Home Agent (HA)

- Router in home network
- Mobile node informs HA about CoA
- Knows mapping from HoA to CoA

"Hey, wait a second! You do use a central entity! Isn't this cheating!?!"

Home Agent (HA)

- Router in home network
- Mobile node informs HA about CoA
- Knows mapping from HoA to CoA

"Hey, wait a second! You do use a central entity! Isn't this cheating!?!"

Yes, but ...

- Routers are not switched off spontaniously
- Routers run a small software system and tend to be less buggy
- No network depends on a single router

Distributed Servers

Distributed Server

- Group of nodes pretending to be a mobile node
- Identified by the home address
- Node addresses represent careof addresses

Distributed Servers

Distributed Server

- Group of nodes pretending to be a mobile node
- Identified by the home address
- Node addresses represent careof addresses

Features

- One node registers at home agent (contact node)
- Nodes can hand back and forth single connections (cooperatively)
- Contact node can change (cooperatively)

Connection Handoff

IP layer: Change address mapping at client

- Part of mIPv6 protocol
- Involves client, donor, home agent, and receiver
- Requires kernel patch at server machines

Connection Handoff

IP layer: Change address mapping at client

- Part of mIPv6 protocol
- Involves client, donor, home agent, and receiver
- Requires kernel patch at server machines

Transport Layer

- Connectionless protocols (UDP): —
- Connection-based protocols (TCP): copy socket state
- Requires kernel patch at server machines

Connection Handoff

IP layer: Change address mapping at client

- Part of mIPv6 protocol
- Involves client, donor, home agent, and receiver
- Requires kernel patch at server machines

Transport Layer

- Connectionless protocols (UDP): —
- Connection-based protocols (TCP): copy socket state
- Requires kernel patch at server machines

Application Layer

- Stateless applications: —
- Stateful applications: copy application state
- Requires cooperation of application

Outline

Motivation

Replication - An Introduction

Virtual Nodes

Distributed Servers

Integration

Conclusion

Integrated Approach

Benefit:

- Virtual Nodes: fault-tolerance for Distributed Servers
- Distributed Servers: anycast mechanism for Virtual Nodes

Integrated Approach

Benefit:

- Virtual Nodes: fault-tolerance for Distributed Servers
- Distributed Servers: anycast mechanism for Virtual Nodes

Facts:

- ► Handover requires an old socket state ⇒ Replication of state
- Only reasonable with active replication

Integrated Approach

Benefit:

- Virtual Nodes: fault-tolerance for Distributed Servers
- Distributed Servers: anycast mechanism for Virtual Nodes

Facts:

- ► Handover requires an old socket state ⇒ Replication of state
- Only reasonable with active replication

Failure Detection:

- Minimize experienced downtime: change contact node quickly
- Minimize false positives: exclude group members slowly

Page 34/37 Availability and Reliability in the XtreemOS Project | Ulm University | J. Domaschka | 2008-11-11

Invocation

- 1. Client sends request to contact node
- 2. Contact node copies socket state
- 3. Contact node broadcasts request and socket
- 4. All nodes process request
- 5. Contact node sends reply to client
- 6. Contact node broadcasts new socket state

Discussion

Fault-tolerance:

- ▶ No fault-tolerance during steps 1 and 2
- ▶ Steps 3 5: Handover reveals #bytes sent and received
 - Allows to send remaining bytes of reply

Discussion

Fault-tolerance:

- ▶ No fault-tolerance during steps 1 and 2
- ▶ Steps 3 5: Handover reveals #bytes sent and received
 - Allows to send remaining bytes of reply

Minimal overhead (copying socket)

- Step 6 purely for garbage collection
- Piggyback on other requests

Discussion

Fault-tolerance:

- ▶ No fault-tolerance during steps 1 and 2
- ▶ Steps 3 5: Handover reveals #bytes sent and received
 - Allows to send remaining bytes of reply

Minimal overhead (copying socket)

- Step 6 purely for garbage collection
- Piggyback on other requests

Changing contact node

- No effect on client
- Other replicas need to know
- Causes an additional group message

XtreemOS:

- Challenge for reliability and availability
- Replication can solve both issues

XtreemOS:

- Challenge for reliability and availability
- Replication can solve both issues

XtreemOS Virtual Nodes:

- Configurable replication framework for fault-tolerance
- Support for multiple middleware systems at client-side
- Deterministic multithreading

XtreemOS:

- Challenge for reliability and availability
- Replication can solve both issues

XtreemOS Virtual Nodes:

- Configurable replication framework for fault-tolerance
- Support for multiple middleware systems at client-side
- Deterministic multithreading

XtreemOS Distributed Servers:

- Anycast due to mobile IPv6
- Group of nodes pretends to be a mobile node
- Handing over of connections

XtreemOS:

- Challenge for reliability and availability
- Replication can solve both issues

XtreemOS Virtual Nodes:

- Configurable replication framework for fault-tolerance
- Support for multiple middleware systems at client-side
- Deterministic multithreading

XtreemOS Distributed Servers:

- Anycast due to mobile IPv6
- Group of nodes pretends to be a mobile node
- Handing over of connections

Integration:

- Both systems are orthogonal
- Increases client-side transparency

Papers

- Matthias Wiesmann et al: Understanding Replication in Databases and Distributed Systems. ICDCS '00
- Hans P. Reiser et al: Consistent Replication of Multithreaded Distributed Objects. SRDS'06
- Hans P. Reiser et al: Deterministic Multithreading for Replicated CORBA Objects. PDCS'06
- Claudio Basile et al: Active Replication of Multithreaded Applications. Transactions on Parallel and Distributed Systems, May 2006
- Michal Szymaniak et al: Enabling Service Adaptability with Versatile Anycast. Concurrency and Computation: Practice and Experience, September 2007.

B. XtreemOS tutorial at ICS09

The tutorial was given at the INRIA/EDF/CEAR joint summer school, near Paris, June, 2009.

Enabling Linux for the Grid

XtreemOS

ICS'09

Tutorial on Security and Virtual Organization Management in Grids

Part 1 – Fundamentals in Security and VO

New York, June 12, 2009

XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576

Contributors

Presenters

- Yvon Jégou, INRIA Rennes, France
- Christine Morin, INRIA Rennes, France
- Corina Stratan, Vrije University Amsterdam, The Netherlands
- Acknowledgements
 - Alvaro Arenas, STFC
 - Haiyan Yu, ICT/CAS, China

Credits

Some slides are based on presentations given by:

- Alvaro Arenas' Grid security tutorial at CoreGRID Summer School 2008
- Matej Artac's presentation on XtreemOS VOPS
- Ake Edlund's security course at ISSGC'07
- Peter Gutmann's tutorial on Security
- Syed Naqvi's Grid security tutorial at CGW 2006
- Philippe Massonet, CETIC, presentation on Grid security requirements, OGF 25, March 2009

General Outline

- Fundamentals in Security & VO
- State of art on security & VO management in Grid systems
- VO management in XtreemOS Grid OS and security architecture

Fundamentals in Security and VO Management

- Basics on security
- Virtual organization concept

ICS'09 tutorial: Security and VO Management in Grids (SMGrid), Friday 12th, 2009

Security

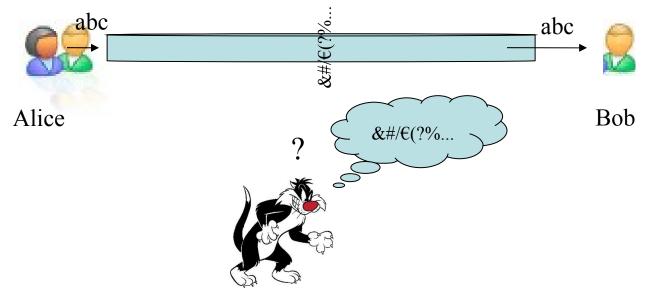
What is computer security?

 Computer security deals with the prevention and detection of unauthorised actions by user of a computer system

Why is security important in Grids?

- Grids are open distributed systems
- Opening our systems to others implies security risks

- Authentication. Assurance of identity of person or originator of data
- Authorisation. Being allowed to perform a particular action
- Integrity. Preventing tampering of data

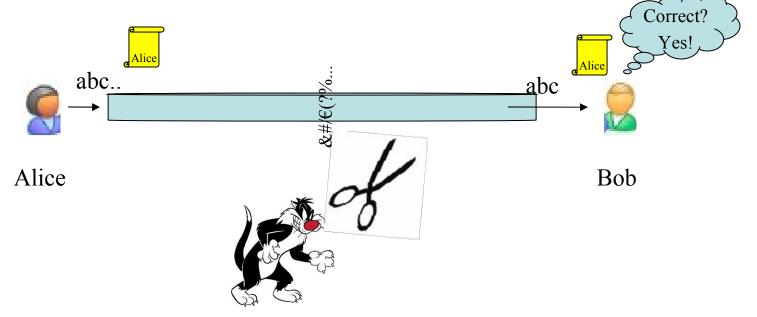

XtreemO

Enabling Linux for the Grid

- Availability: Legitimate users have access when they need it
- Non-repudation: Originator of communications can't deny it later
- **Confidentiality:** Protection from disclosure to unauthorised persons
- Auditing: Provide information for post-mortem analysis of security related events

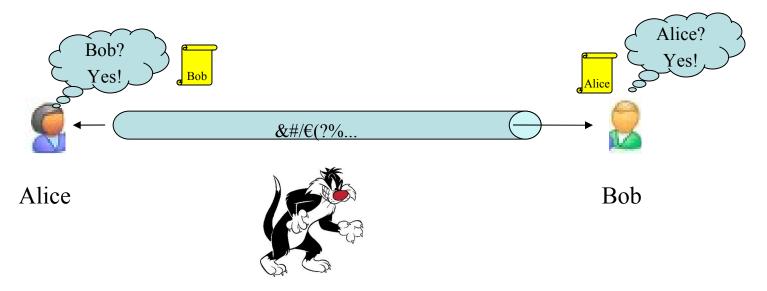
Confidentiality - only invited to understand conversation (use encryption)

Confidentiality (privacy) - A secure conversation should be private. In other words, only the sender and the receiver should be able to understand the conversation. If someone eavesdrops on the communication, the eavesdropper should be unable to make any sense out of it.


(This is generally achieved by encryption/decryption algorithms.)

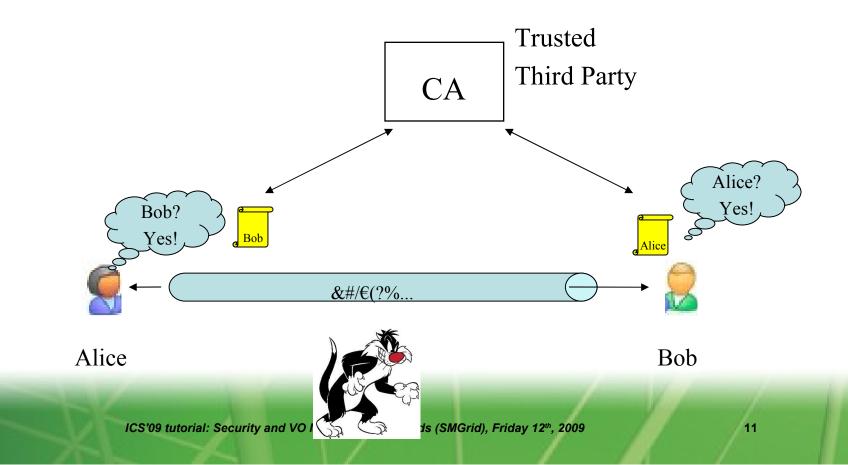
ICS'09 tutorial: Security and VO Management in Grids (SMGrid), Friday 12th, 2009

Security fundamentals


Integrity - message unchanged (use signed messages)

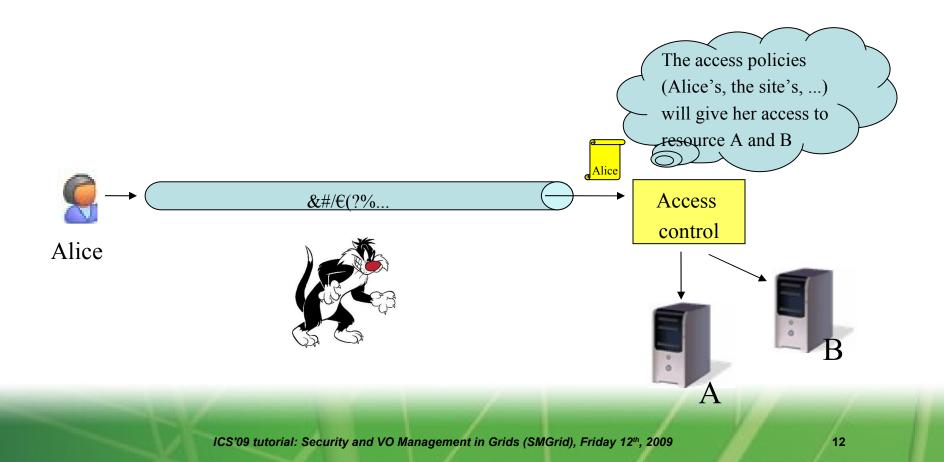
Integrity - A secure communication should ensure the integrity of the transmitted message. This means that the receiving end must be able to know for sure that the message he is receiving is exactly the one that the transmitting end sent him. Take into account that a malicious user could intercept a communication with the intent of modifying its contents, not with the intent of eavesdropping.

Authentication - invited are who they claim to be (use certificates and CAs)



AuthN - A secure communication should ensure that the parties involved in the communication are who they claim to be. In other words, we should be protected from malicious users who try to impersonate one of the parties in the secure conversation.

ICS'09 tutorial: Security and VO Management in Grids (SMGrid), Friday 12th, 2009


The role of the CA is manage the certificate life cycle: create, store, renew, revoke

Security fundamentals

Authorization - allowing or denying access to services based on policies

Security fundamentals

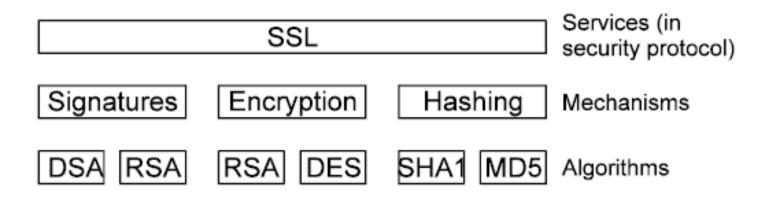
To be able to analyse the communication we also need auditing providing information for post-morten analysis of security related events...

A common way to organize these concepts is 'AAA' - Authentication, Authorization and Auditing.

XtreemC

Enabling Linux for the Grid

- enable the identification (Authentication) of entities (users, systems, and services),
- allow or deny access to services and resources (Authorization),
- and provide information for post-mortem analysis of security related events (Auditing).

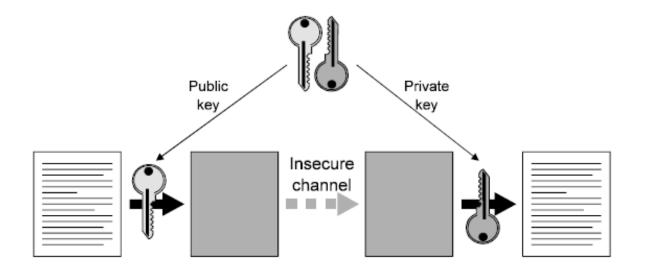


- Three basic building blocks are used:
 - Encryption is used to provide confidentiality, can also provide authentication and integrity protection
 - Digital signatures are used to provide authentication, integrity protection, and non-repudiation
 - Checksums/hash algorithms are used to provide integrity protection, can provide authentication
- One or more security mechanisms are combined to provide a security service

Security Services and Mechanisms

A typical security protocol provides one or more services

- Services are built from mechanisms
- Mechanisms are implemented using algorithms



- An entity uses computer programs to cryptographically verify the information given
 - If everything is ok, then trust of the information is established
 - Otherwise, there is not trust

Public-Key Encryption

Users possess public/private key pairs

Anyone can encrypt with the public key, only one person can decrypt with the private key

Key Management

Key management is the hardest part of cryptography

Two classes of keys

- Short-term session keys
 - Generated automatically and invisibly
 - Used for one message or session and discarded
- Long-term keys
 - Generated explicitly by the user

Long-term keys are used for two purposes

- Authentication (including access control, integrity, and nonrepudiation)
- Confidentiality (encryption)
 - Establish session keys
 - Protect stored data

Key Management Problems

Key certification

XtreemC

Enabling Linux for the Grid

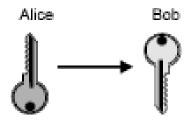
Distributing keys

- Obtaining someone else's public key
- Distributing your own public key

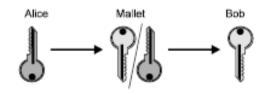
Establishing a shared key with another party

- Confidentiality: Is it really known only to the other party?
- Authentication: Is it really shared with the intended party?

Key storage

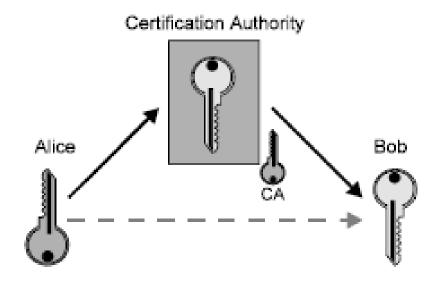

Secure storage of keys

Revocation


- Revoking published keys
- Determining whether a published key is still valid

Alice retains the private key and sends the public key to Bob

Mallet intercepts the key and substitutes his own key


Mallet can decrypt all traffic and generate fake signed message

ICS'09 tutorial: Security and VO Management in Grids (SMGrid), Friday 12th, 2009

20 **20**

A Certification Authority (CA) solves this problem

CA signs Alice's key to guarantee its authenticity to Bob

Mallet can't substitute his key since the CA won't sign it

- CAs are entities that are trusted by different systems
- The CAs are responsible for certifying the public keys of different users who subscribe to the CA
 - Guarantee the connection between a key and an end entity
- An end entity is
 - Person, role ("Director of marketing"), organisation, pseudonym, a piece of hardware or software, an account (bank or credit card)
- CA manages key lifecycle: creation, store, delete, renew

Obtaining a Certificate (1)

- 1. Alice generates a key pair and signs the public key and identification information with the private key
 - Proves that Alice holds the private key corresponding to the public key
 - Protects the public key and ID information while in transit to the CA
- 2. CA verifies Alice's signature on the key and ID information
- 3. Optional: CA verifies Alice's ID through out-of-band means
 - email/phone callback

XtreemOS

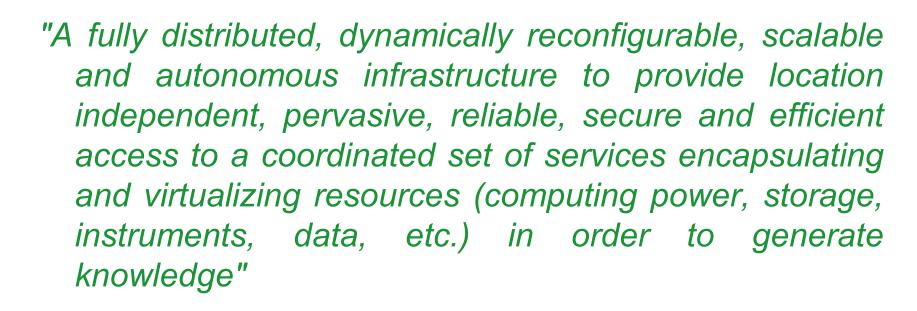
Enabling Linux for the Grid

Business/credit bureau records, in-house records

- 4. CA signs the public key and ID with the CA key, creating a certificate
 - CA has certified the binding between the key and ID

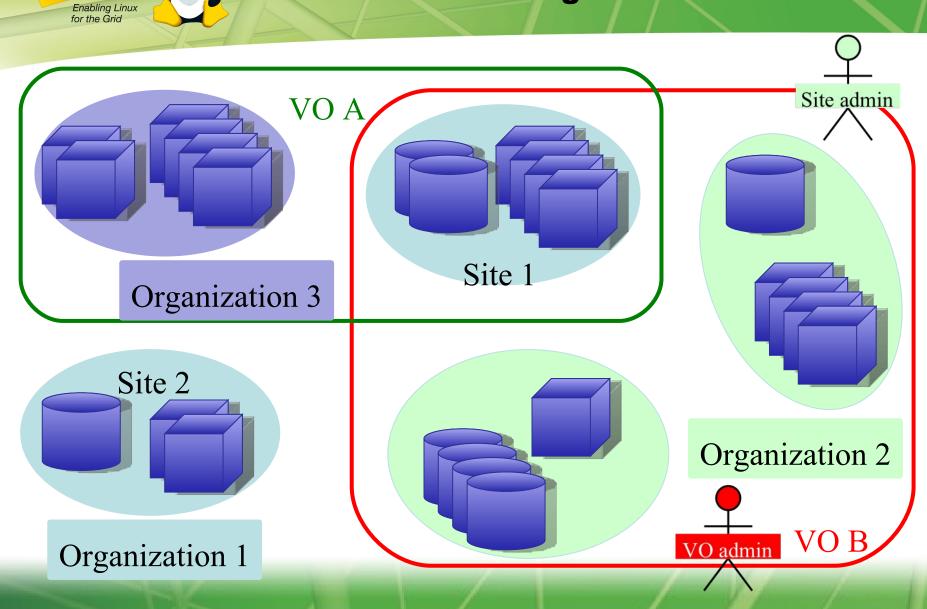
5. Alice verifies the key, ID, and CA's signature

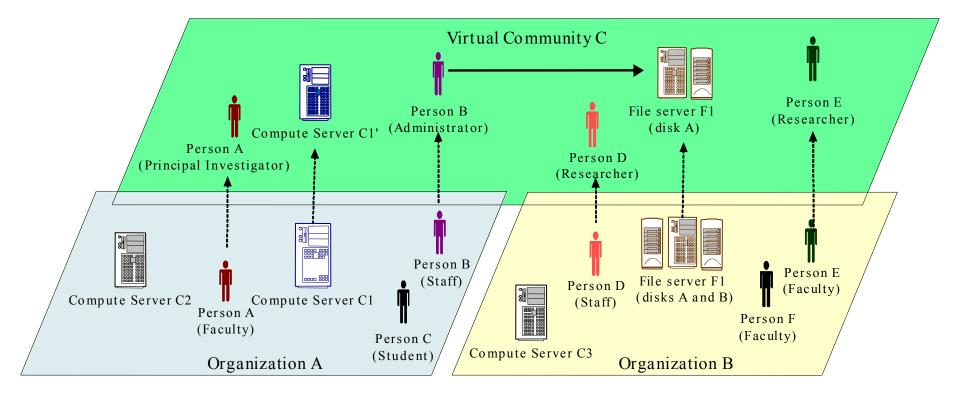
- Ensures the CA didn't alter the key or ID
- Protects the certificate in transit


6. Alice and/or the CA publish the certificate

Public Key Infrastructure (PKI)

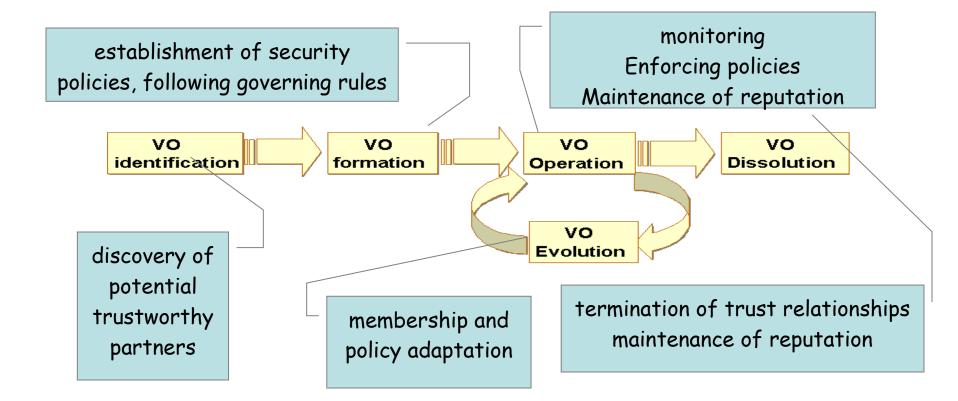
- PKI allows one to know that a given key belongs to a given user
 - Based on asymmetric encryption
- The public key is given to the world encapsulated in a X.509 certificate
- Certificates: Similar to passport or driver license
 - Identity signed by a trusted party (a CA)




- VO = set of users that pool resources in order to achieve common goals - Rules governing the sharing of the resources
- A VO can be seen as a distributed organization which has the task of managing access to resources that are accessed through computer network and located in different domains

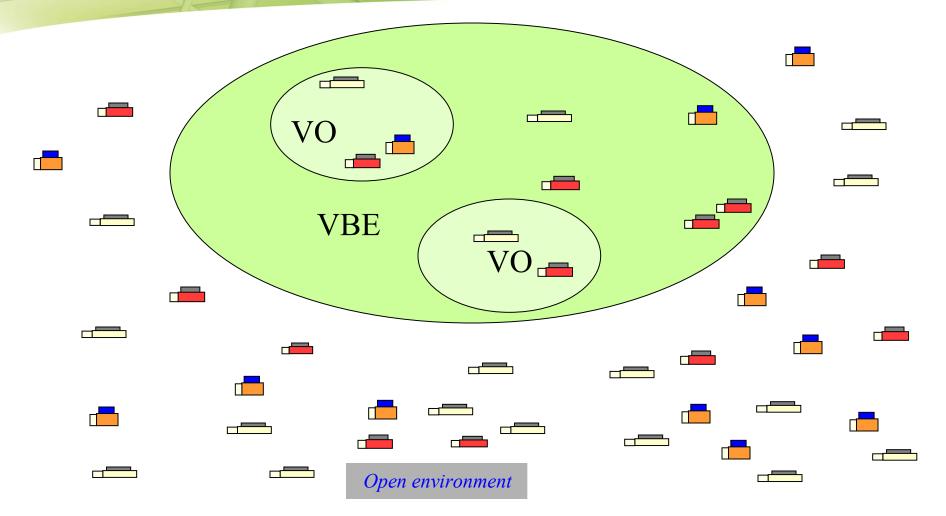
Virtual Organizations

XtreemOS


Virtual vs. Organic structure

XtreemOS

Enabling Linux for the Grid



- VO are created in the context of a Virtual Breeding Environment (VBE)
- A Virtual Breeding Environment is composed of users and service providers. It provides user and service provider registration, certificate management, and VO lifecycle management.

ICS'09 tutorial: Security and VO Management in Grids (SMGrid), Friday 12th, 2009

32

Actors

- VBE administrator
- VO administrator
- Domain/site administrators
- End-users VO members

ICS'09

Tutorial on Security and Virtual Organization Management in Grids

PART 2 - Security and VO Management in Grids

XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576

Outline

Grid security & VO management overview

- Grid security essentials
- Establishing trust, policies
- Single sign on and delegation
- Authorization
- Monitoring logging, auditing and accounting

Real-life examples

- Globus Toolkit
- EGEE/gLite
- Unicore

- Grid security essentials
- Establishing trust, policies
- Single sign on and delegation
- Authorization

XtreemO

Enabling Linux for the Grid

Monitoring - logging, auditing and accounting

Access to shared services

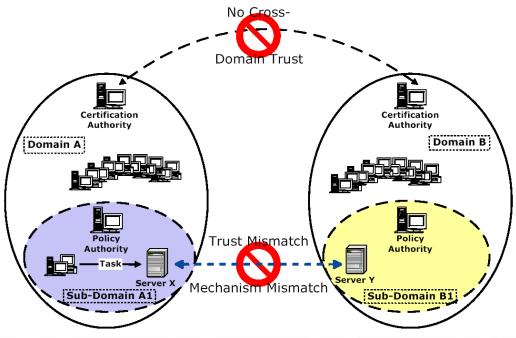
 cross-domain authentication, authorization, accounting, billing

Support multi-user collaboration

- organized in one or more 'Virtual Organisations'
- may contain individuals acting alone their home organization administration need not necessarily know about all activities

Leave resource owner always in control

- Resources may be valuable & the problems being solved sensitive
 - Both users and resources need to be careful
- Resources & users often located in distinct administrative domains
 - Can't assume cross-organizational trust agreements
 - Different mechanisms & credentials
- Dynamic formation and management of communities (VOs)
 - Large, dynamic, unpredictable, self-managed …
- Interactions are not just client-server, but service-to-service on behalf of the user
 - Requires delegation of rights by user to service
- Policy from sites, VO, users need to be combined
 - Varying formats
- Want to hide as much as possible from applications!

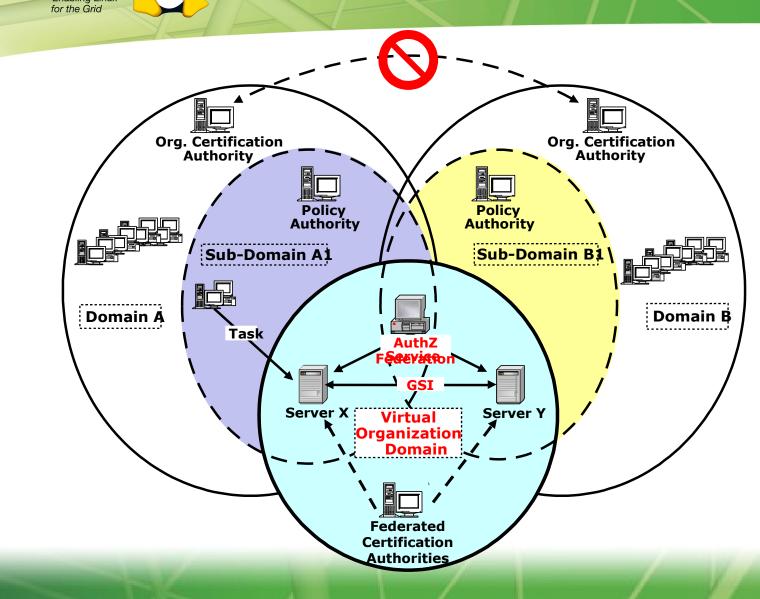


- A reference specification for Grid security architectures
- Protocols and APIs to address Grid security needs
- Based on public-key encryption technology
 - SSL protocol for authentication, message protection
 - X.509 certificates
- Each user as a Grid id, a private key, and a certificate signed by a CA
- First implementation in the Globus Toolkit

Establishing trust

- It is the dynamic cross-organizational resource sharing that gives us a problem
- VOs are user-to-user, not organization-to-organization
- No trust, different policies, different mechanisms

Trusted Third Parties


- Independent identity assessment providers
- The most commonly used today e.g., Certificate Authorities
- Example: www.gridpma.org
- Federations

XtreemC

Enabling Linux for the Grid

- Organizations trust each other to identify their own users
- Web of trust
 - Users trust each other to do identify others

Certification Authorities (CAs) in Grid

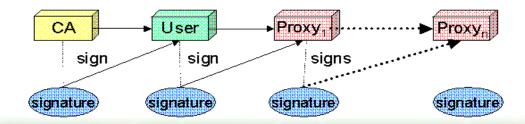
XtreemOS

Enabling Linux

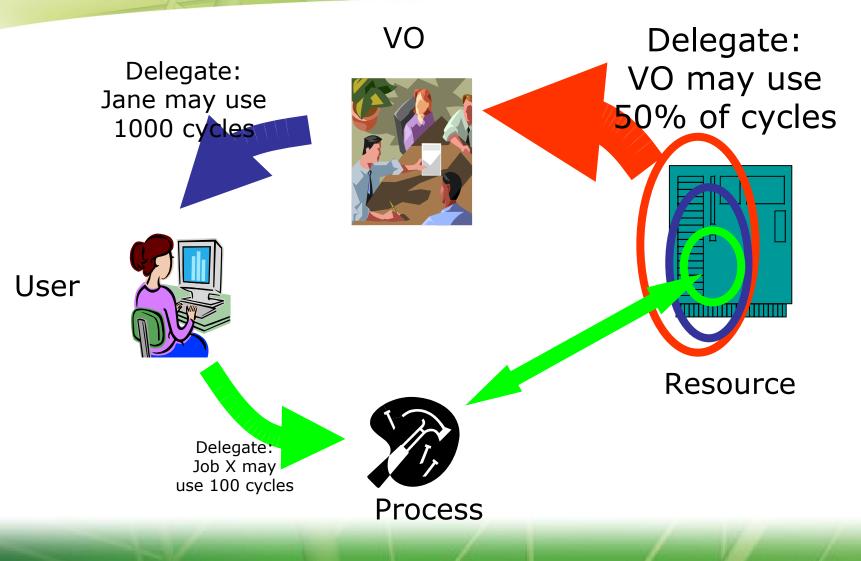
Jobs require access to multiple resources

- To authenticate with your certificate directly you would have to type a passphrase every time
- Need to automate access to other resources: Authenticate Once
 - Important for complex applications that need to use Grid resources
 - Allows remote processes and resources to act on user's behalf also known as delegation
 - Also you need a way to send you VO details (Groups membership, roles and capabilities) across

 Solution adopted in the Grid Security Infrastructure: proxy certificates


- A temporary key pair
- in a temporary certificate signed by your 'long term' private key
- valid for a limited time (default: 12 hours), but can be renewed

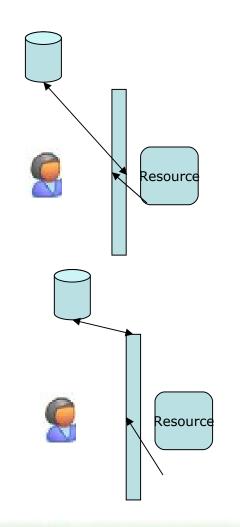
Delegation and limited proxy


Delegation = remote creation of a (second level) proxy credential

- Agents and brokers act on behalf of users, with (a subset of) their rights
- you don't know beforehand where your task will end up
- definition of attribute release policies to these 'unknown' entities is virtually impossible
- need to support restricted delegation
- Allows remote process to authenticate on behalf of the user
- The client can elect to delegate a "limited proxy"
 - Each service decides whether it will allow authentication with a limited proxy
 - The proxy can also be used as a container for other elements (e.g. extensions that contain user credentials)

Authorization

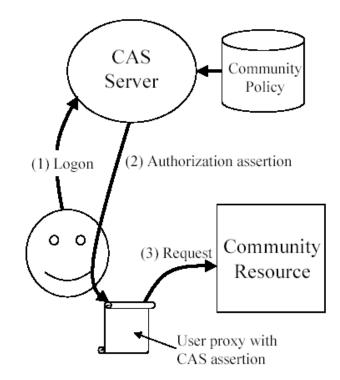
Policies for accessing resources


Authorization to a resource alternatives

Push Authorization

- Produce a proof (proxy certificate) that you are authorized to use the requested resource
- Bring (push) this proof to an access control point, who will make sure the proof is valid

Pull Authorization


- Go to the access control point and ask for access (just showing who you are, showing your ID, nothing about what you're authorized to do).
- The access controller uses your ID to pull the access policies from a database.
- Depending on the access policies, you're authorized to run your program on the resources, or parts of the resources, or not at all.

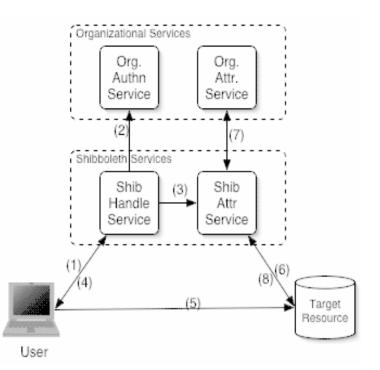
CAS – Community Authorization Service

- CAS manages a data base of VO policies
 - What each grid user can do as VO member
- A Grid user contacts CAS
 - Proxy cert. is exploited for authentication on CAS
 - CAS returns a signed policy assertion for the user
- Grid user creates a new proxy that embeds the CAS assertion
- Exploits this proxy certificate to access services

XtreemOS Enabling Linux for the Grid

VOMS

VOMS = Virtual Organization Membership Service


- Developed by the EU DataGrid and DataTag projects
- Provides a way to delegate the authorization of users to VO managers:
 - The user credentials are associated with a set of membership information (VO name, group, roles, generic attributes)
 - The information is stored in an account database
 - The VOMS service can provide signed assertions containing these attributes
- VOMS allows for dynamic & fine-grained access control on Grid resources

Shibboleth

Attribute Authority Service for distributed cross domain environments

- User authentication is done on a local Shibboleth server that returns a handle to the user
- Users use the handle to access remote services
- Remote services use the user handle to retrieve user's attributes from a Shibboleth Attribute Server
- Remote Service determines user access rights exploiting his attributes

- Important for security handling (and not only)
- Auditing
 - uses information recorded (logged) about system activity for the purposes of accountability and security assurance
- Logging
 - a common infrastructure for the recording of system events for tracking, accountability and auditing purposes

Accounting

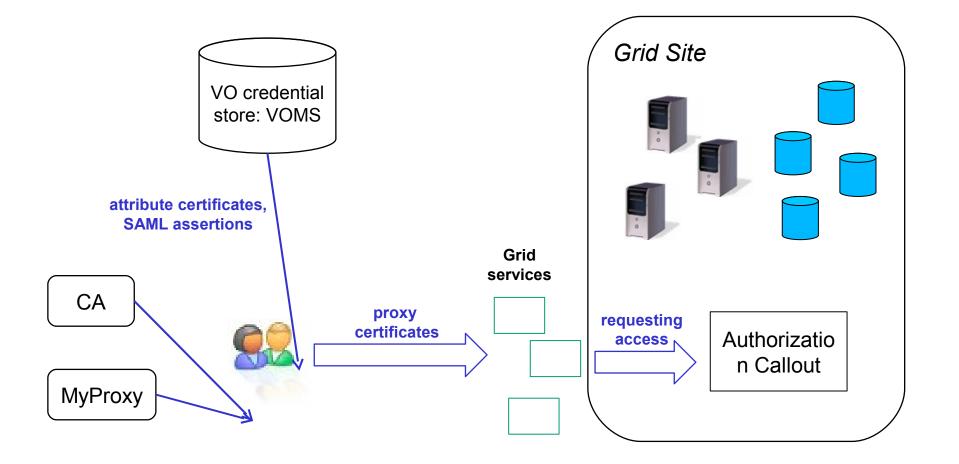
All relevant system interactions can be traced back to a user

Real-life examples

- Globus Toolkit
- EGEE/gLite
- Unicore

- Open source middleware for computing grids
- Has evolved to an implementation based on web services
 - implements the Open Grid Services Architecture (OGSA) and the Web Services Resource Framework (WSRF)
 - includes components that provide resource management, data management, security, information infrastructure, communication, fault detection etc.
- Probably the most widely used Grid middleware
- Included in other Grid software stacks
 - OSG
 - LCG

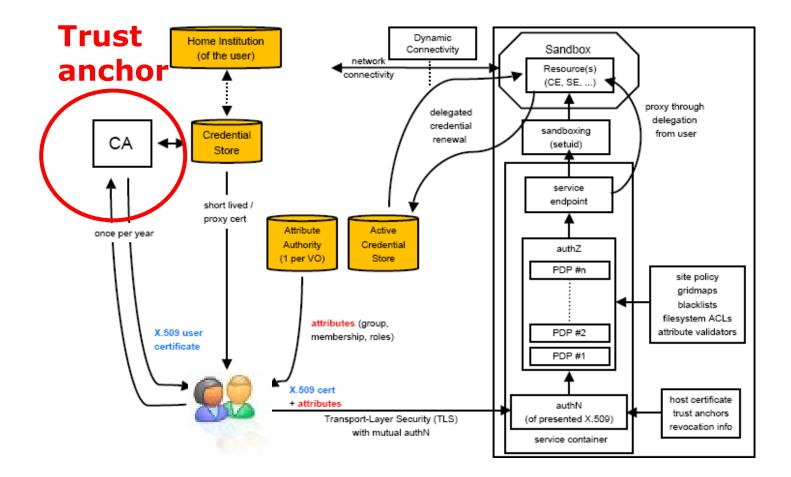
- Implements the Grid Security Infrastructure (GSI)
- X.509 proxy certificates
 - Enable single sign-on
 - The users can dynamically assign rights to services
- MyProxy storing and retrieving GSI credentials
 - "convert" from username/passphrase to a GSI certificates
 - Renewing credentials for long-running tasks
 - Support for One Time Password


GridShib – GT integration with Shibboleth

- Policy controlled attribute service
- Interactions through WS protocols
- Authorization many types of policy information:
 - Attribute assertions: VOMS, X509, Permis, Shibboleth, SAML, Kerberos, …
 - Authorization assertions: XACML, SAML, CAS, XCAP, Permis, ...

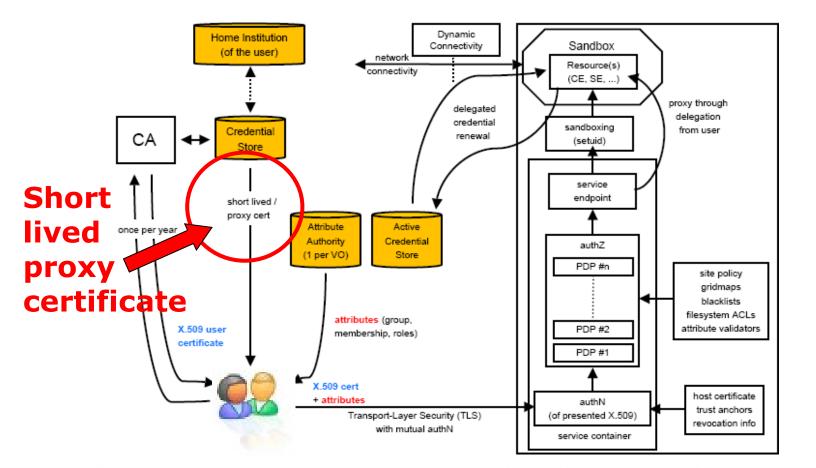
Authorization processing

- Policy Decision Point (PDP) abstraction
- after validation, all attribute assertions are mapped to XACML Request Context Attribute format
- mechanism-specific PDP instances are created for each authorization assertion and call-out service


Example #2: gLite

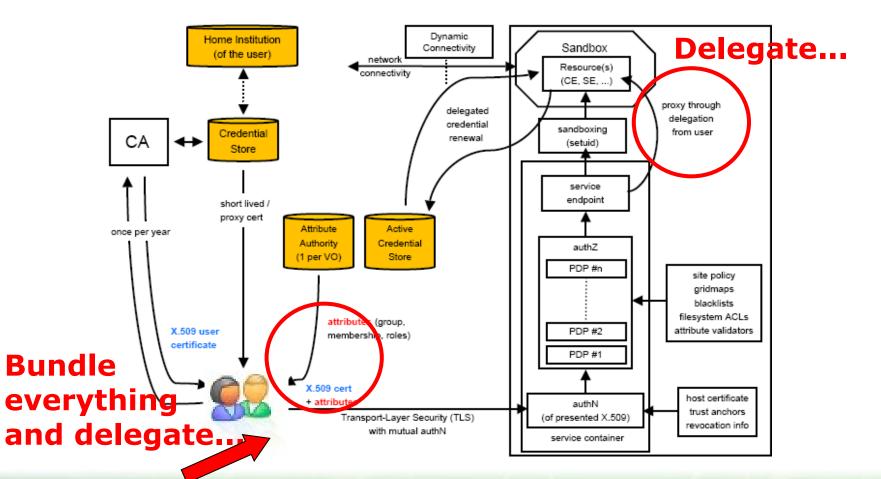
- gLite: Grid middleware developed at CERN, in the context of the LHC experiments
- Used by more than 15000 researchers around the world
- gLite components:
 - User Interface (UI)
 - Computing Element (CE)
 - Storage Element (SE)
 - Resource Broker (RB)
 - Information Service (IS)

- Security system based on X.509 certificates
- Single sign-on enabled by proxy certificates
- VOMS service used to stored information about groups, roles and capabilities for the users
- Local Centre Authorization Service (LCAS)
 - Checks if the user is authorized or banned at the site
 - And if the site can currently accept jobs
- Local Credential Mapping Service (LCMAPS)
 - Maps the Grid credentials (including groups, roles etc.) to local credentials


gLite – Security flow (1)

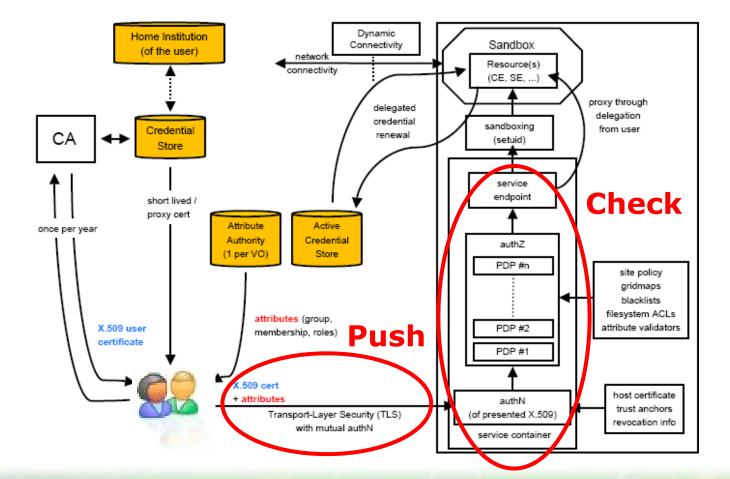
XtreemOS

Enabling Linux for the Grid


gLite – Security flow (2)

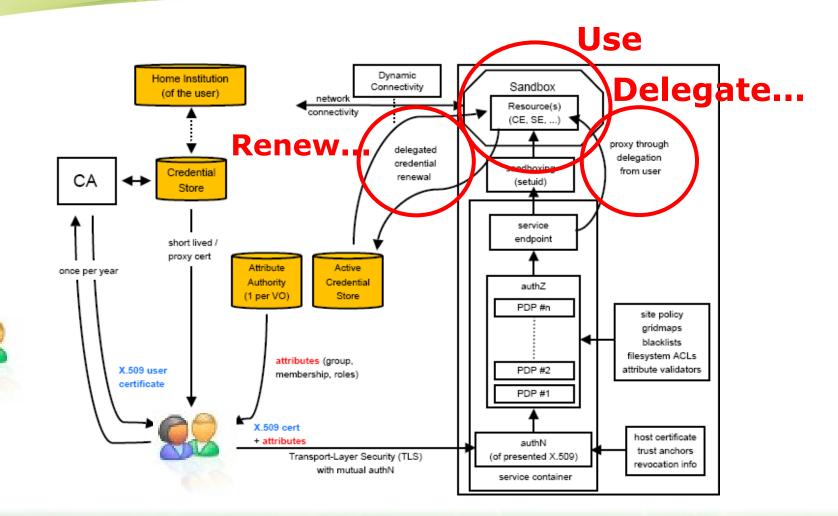
XtreemOS

Enabling Linux for the Grid


gLite – Security flow (3)

XtreemOS

Enabling Linux for the Grid


gLite – Security flow (4)

XtreemOS

Enabling Linux for the Grid

gLite – Security flow (5)

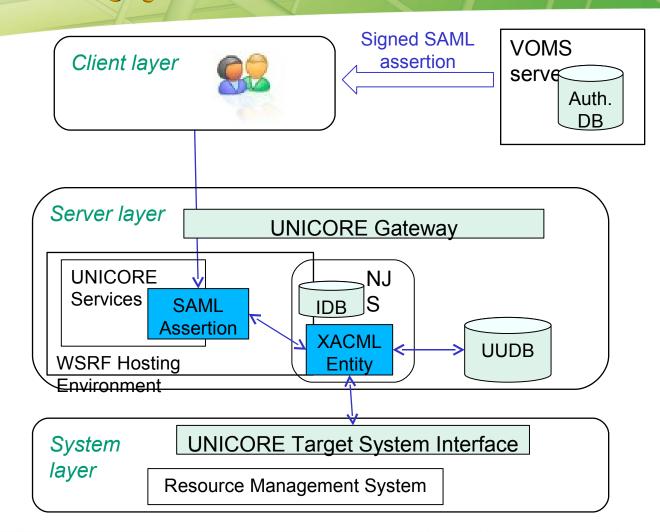
XtreemOS

Enabling Linux for the Grid

- Grid middleware used by many European research projects
 - DEISA (Distributed European Infrastructure for Scientific Applications) uses the UNICORE technology

• UNICORE layers:

- Client: graphical interfaces, command line, APIs
 - The UNICORE services can also be accessed through portals (e.g. GridSphere)
- Service: components of the Unicore Service Oriented Architecture
 - Gateway entry point to a Unicore site
 - *NJS job management & execution engine*
 - Global service registry
 - •
- System: interface between Unicore and the local resource management systems / operating systems



- Mutual authentication (between Gateway/NJS and User) using X509 Certificates
- No proxy certificates, no generalized delegation
- Authorization:
 - Performed by NJS (and thus moved away from the target system)
 - Using UUDB (Unicore User Database)
 - More recent extensions to support both role and attribute based authorization (VOMS, Shibboleth)
- Separation of consigner and endorser: only a user can endorse a job; an NJS or a user can consign a job

- VOMS releases SAML assertions containing user attributes
 - The assertions are included in the SOAP headers,
 - and signed with the VOMS server's certificate
- The authorization decisions are taken in the service tier
 - PDP Policy Decision Point
 - uses XACML policies,
 - and information obtained from the UNICORE User Database

UNICORE – Security flow (with SAML based VOMS)

XtreemOS

Enabling Linux for the Grid

Interoperability

- Can services that are hosted in different environments (with different security mechanism) interoperate?
- This is a difficult problem
 - We cannot expect all the organizations to adopt a single security technology
 - Or to share their user registries with other organizations

Ongoing work in many of the current Grid projects

- standardized protocol to communicate authorization assertions across OSG, EGEE, Globus and Condor
- XtreemOS: interoperability solution based on SAGA (Simple API for Grid Applications)

References

- M. Coppola, Y. Jegou, B. Matthews, C. Morin, L.P. Prieto, O.D. Sanchez, E.Y. Yang, H. Yu. Virtual Organizations Support within a Grid-Wide Operating System. IEEE Internet Computing, 12(2):20-28, March/April 2008. Available at http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=4463381
- M. Adamski, A. Arenas, A. Bilas, P. Fragopoulou, V. Georgiev, A. Hevia, G. Jankowski, B. Matthews, N. Meyer, J. Platte, and M. Wilson. *Trust and Security in Grids: A State of the Art*. CoreGRID White Paper WHP-0001, May 2008. Available at http://www.coregrid.net/mambo/images/stories/WhitePapers/whp-0001.pdf
- E.Y. Yang (editor). D3.5.11 3rd Specification and Design of XtreemOS Security and VO Services. XtreemOS Project Deliverable, 2008. Available at http://www.xtreemos.eu/publications/plonearticlemultipage.2008-06-26.0232965573/pub
- V. Venturi, M. Riedel, A.S. Memon, M.S. Memon, F. Stagni, B. Schuller, D. Mallmann, B. Tweddell, A. Gianoli, V. Ciaschini, S. van de Berghe, D. Snelling, and A. Streit. Using SAML-based VOMS authorization within Web Services-based UNICORE Grids. Proceedings of 3rd UNICORE Summit 2007 in conjunction with EuroPar 2007, Rennes, France, LNCS 4854. Available at http://www.unicore.eu/documentation/documents.php

Thank you!

Questions?

ICS'09 tutorial: Security and VO Management in Grids (SMGrid), Friday 12th, 2009

37

ICS'09

Tutorial on Security and Virtual Organization Management in Grids

PART 3 - Security and VO Management in XtreemOS

XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576

Outline

- Introduction to XtreemOS
- Administration of Grid Systems
- Security Model on XtreemOS
- Foundations for Security Enforcement
- XtreemOS Security Infrastructure
- On-going Work

XtreemOS

Introduction to XtreemOS

• XtreemOS is a Grid Operating System

Targets

- Large number of users
- Large number of resources
- High dynamicity

XtreemOS

- POSIX/UNIX interface for developers
- POSIX/UNIX interface for users
- Supports legacy applications
- Supports Grid standards (ex: SAGA)

Global Operating System Services

- Distributed services
- Scalability
 - Provided through replication
- Dependability
 - Replication
 - Migration
- Virtual Nodes
 - Framework for scalable and resilient services
- Service Discovery

No global Scheduler

Xtreem

Enabling Linux for the Grid

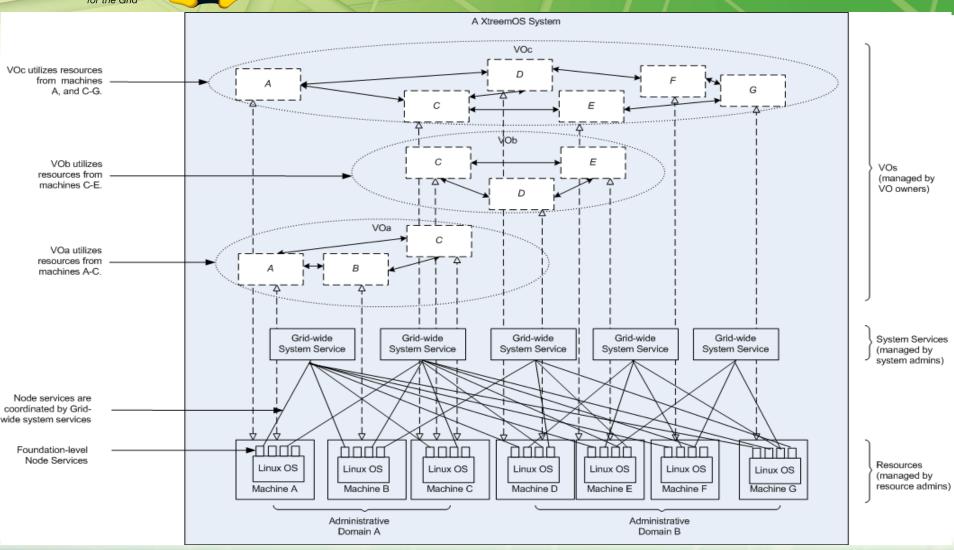
- Job manager service created for each job
- Resource Discovery on peer-to-peer Overlay
 - Structured overlay for faster access to requested resources
 - Resource negociation
 - VO policies checked during discovery

Administration of XtreemOS Grids

- Domain administrators delegate user administration to Virtual Breeding Environments (VBE)
 - SLA
 - PKI infrastructure
- Users create VOs
- Domain administrators provide resources to VOs
- Resource owners always in control

Virtual Breeding Environment – VBE

- Infrastructure for hosting Virtual Organisations (VO)
- User registration
- VO lifecycle
- Implements core services
- Virtual Organisations
 - Manage VO models (groups, roles, capabilities)
 - Manage user credentials (attributes)
- VO administration
 - Geographically distributed
 - Autonomous, independent from administration domains



- A VO can be seen as a distributed organisation which has the task of managing access to resources that are accessed through computer network and located in different domains
- Administration through the distribution of
 - Identity certificates (X.509)
 - Attribute certificates
 - Bind credentials to identities

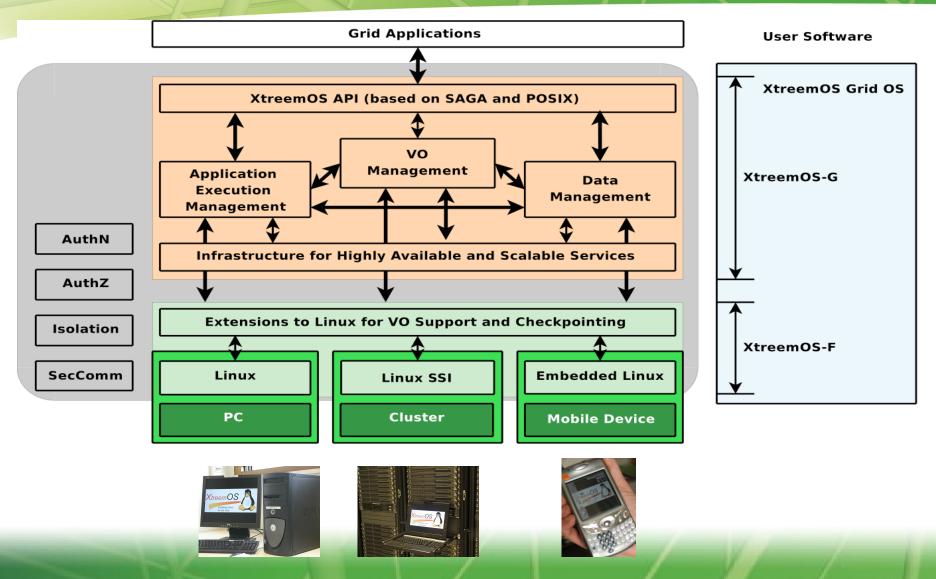
to users and resources

XtreemOS Enabling Linux for the Grid

XtreemOS System

ICS'09 tutorial: Security and VO Management in Grids (SMGrid), Friday 12th, 2009

11



XtreemFS

Distributed file system

- Spanning the grid
- Replication
- Striping
- Access control based on Grid attributes
- Each XtreemOs users has one home volume in XtreemFS

XtreemOS Architecture

XtreemOS

Enabling Linux for the Grid

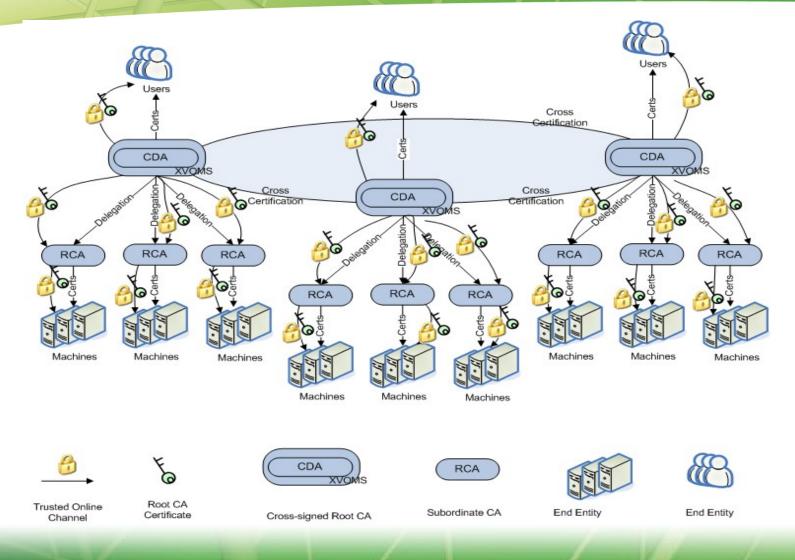
ICS'09 tutorial: Security and VO Management in Grids (SMGrid), Friday 12th, 2009

13

Security Model in XtreemOS

ICS'09 tutorial: Security and VO Management in Grids (SMGrid), Friday 12th, 2009

14


Security Model

PKI-based trust model

- Top: a set of cross-certified root CAs
- Underneath: subordinate CAs (RCAs)
- Identifiers and attributes

Trust Model

VBE and VO

Virtual Breeding Environments – VBE

- Provide security based on trust
 - Services running on behalf of a VBE trust each other
 - Trust established through cryptography
 - Secure communications
- Provide means to manage VOs in a scalable way
- Authorization based on node-level and VO-level policies

Single-Sign-On

XtreemC

Enabling Linux for the Grid

- User session management services trusted by XtreemOS services
- In charge of validating user credentials and user requests
- Provides the interface between the user space and the operating system space

Delegation

- User session management services can be replicated on resource nodes
- User can run Grid requests from resource nodes (same capabilities as from their access node)

Isolation

Protection

- Security
- Performance, quality of services
- Resource usage

Foundations

Namespaces

Global namespaces

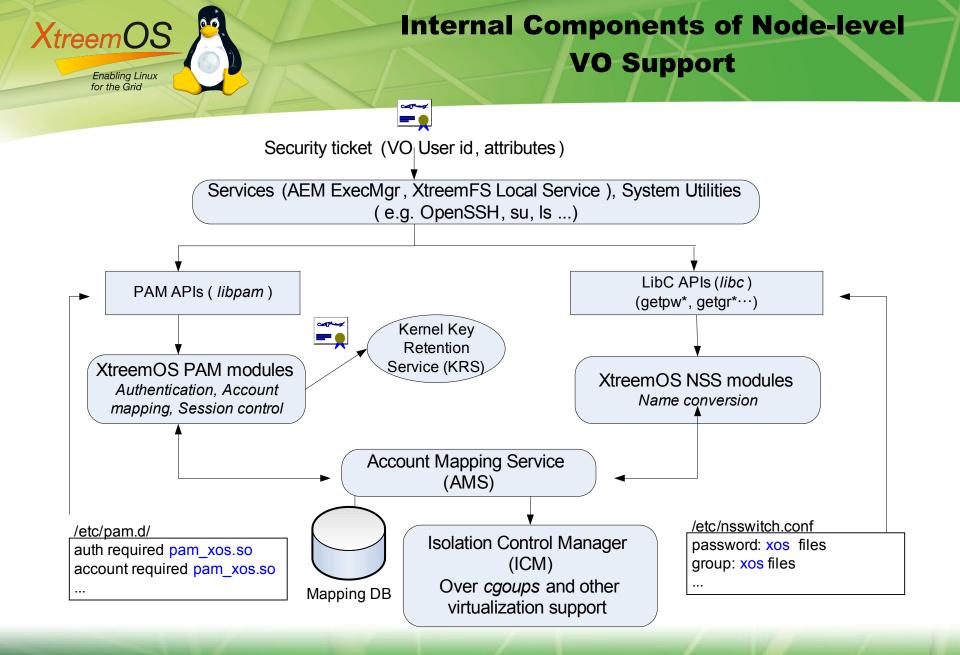
- GUID, GVID, GGID, GNID
 - Identifiers
 - Global IDs are unique
- Users and nodes have X.509 certificates
 - Identity stored in the distinguished name (DN)
- Node-level (local to resources) namespaces
 - OS users (UID/GID)
 - Files (inodes)
 - Processes (PIDs)
- VO namespaces
 - Groups, role, capability

- Mapping between different namespaces managed by local service xos-amsd
 - GUID \leftrightarrow UID
 - GGID \leftrightarrow GID
- With the support of nsswitch
 - Is -1 shows the GUID of the file owner

Isolation, Job context

Job context created

- When a user session is opened on some resource
- Can be


XtreemC

Enabling Linux for the Grid

- Simple Unix account
- Control groups
 - Iimit/protect resource usage
 - Accounting, billing
- Namespaces (PID, user, net, ...)
 - Restrict visibility from job context
 - Net namespaces restrict access to Internet
- Containers (~ cgroups + namespaces)
- Virtual machines

- xos-amsd: management of global to local entity mapping
- pam-xos: modules in charge of authentication, autorisation and session management
- nsswitch: POSIX namespace management
- ssh-xos: extends ssh authentication with XOS certificates
 - Provides same account mappings as for jobs

XtreemOS Security Architecture Components

XVOMS

XVOMS

- User and RCA registration
- VO lifecycle management
 - Creation/dissolution

Web frontend, VO Creation

VOLife Frontend

XtreemOS

Enabling Linux for the Grid

Virtual Organiza	tions in A	ctio	n	XtreemOS Enabling Linux for the Grid
Home Manage Users	Manage My	VOs	Manage My Resources	Welcome to VoLifeCycle , admin [logout
Create a VO	Create a VO			
Join a VO				
My Pending Requests	VO Name: Options:	Aut	omatic approving of requests(disabled)	
Get an XOS-Cert	VO Description:	B	7 U A A 🗛 💆 📰 🚍 🗐	
Generate new keypair				
About me				
Change Password				
Logout				
			Create Cancel]

VO Lifecycle (2)

XVOMS

- User and RCA registration
- VO lifecycle management
 - Creation/dissolution
 - User and node registration
 - Define and manage attributes (ex: roles and groups)
 - Associate attributes to users

Joining a VO

Xtree

Select VO		
	Home Manage Users	Manage My VOs Manage My Resources Welcom
and	Create a VO	Join a VO
1	Join a VO	Search: P JoinVO LeaveVO Refresh
send	My Pending	GVID VO Name VO Owner Is Member Description
	Requests	2fd9bc8f-a8a4-4195-85d0-272d1f63f093 testvo admin false
ioining	Get an XOS-Cert	4ecc77d7-c153-4a57-8430-b06df3825aa2 testvi admin false
joining requests	Generate new	9d2dbf39-a754-4cc8-9b00-c6c83f218bd3 testes admin false
roquosts	keypair	f7206ce2-4d38-4432-9100-1aa0a5ec8152 ette admin false
requests	About me	f39c6568-35c1-4f50-b7b8-d8c785dba11a test11 admin false
	Change Password	1047e048-3739-45b6-ba04-d729832e539d test1 admin false
	-	94c0658a-4d15-4f15-b9aa-9340813253ce asdf admin false
	Logout	9d705a80-6fcf-4a9c-a666-af51673e9f5b 11 admin false
		276683d2-ed17-40d6-8f19-d52d1aa969b1 ppp admin false
		036bdc25-d01d-46b4-a56a-99a2aededfa0 xc admin false
		baca5795-823c-43b3-890b-3a556fef9290 test admin true

Virtual Organizations in Action

Manage VOs

VO Lifecycle (3)

XVOMS

- User and RCA registration
- VO lifecycle management
 - Creation/dissolution
 - User and node registration
 - Define and manage attributes (ex: roles and groups)
 - Associate attributes to users
- User credential distribution
 - Attribute certificates

Get an XOS certificate

After the request is approved, getting an XOS-cert online

XtreemOS

Enabling Linux for the Grid

ļ	/irtual	Org	aniza	tions	in	Action	

	Home	Manage Users	Manage My V	Ds Manage My	Resources					
	Create a VO		Get an XOS-Cert							
Join a VO		- Choose your i	Channess in the All On							
	My Pending Requests			Choose your joined VO: VO Name: test						
	Get an X	(OS-Cert	— Specify Cert generating parameters:							
	Generat keypair	e new	Passphrase:	•••••						
Ab	About n	ie		••••						
	Change	Password	Valid days:	40						
	Logout									
					Submit					

Manage VO Resources

Virtual Organizations in Action

Manage resources

in a VO

Home Manage Users	Mana	ge My VO	s Manage	My Resour	rces			W	el
Register a RCA	Managin	g RCA Reso	ources						
Add a Resources	Search:					AddResource	DelResource	Refresh	
Approve Resources	ld 📃	Name	RCA \	/0s	Desc				1
Get Machine Certificates									
	Search:					AddToVO R	efresh		-
	ld 📃	Name	Is Memember	Owner	Desc				1
	1	testvo	false	admin				-	
	2	testvi	false	admin					
	3	testes	false	admin					
	4	ette	false	admin				ĭ	
	5	test11	false	admin					

VO Lifecycle (4)

XVOMS

- User and RCA registration
- VO lifecycle management
 - Creation/dissolution
 - User and node registration
 - Define and manage attributes (ex: roles and groups)
 - Associate attributes to users
- User credential distribution
 - Attribute certificates
- RCA: resource credential management

XtreemOS security components

VOPS

- Policy management point
- Policy decision point
- Filters to distribute policy decisions in a scalable way

RCA

- Resource registration
- Distributes certificates to resources
- Attributes define resource capabilities for resource discovery (#cpus, memory, ...)

User Session Service

• User session services

Xtreem

Enabling Linux for the Grid

- Started when the user logs in
- In charge of validating user credentials
- Trusted by XtreemOS operating system services
- Bridging the user space with the operating system space
- All grid requests go through the user session service
- Support untrusted client nodes
- Provide Single-Sign-On
- Provide Delegation
 - Can be replicated on resource nodes

Node-level security services

- Secure communication (certificate+SSL)
- Policy for account mapping and credential management
- Node-level and VO-level policies
- Isolation
 - Visibility / protection
 - performance

Conclusion

What we want to achieve ?

- Local resource administrator
 - Autonomous management of local resources
- VO administrator
 - Ease of management
 - Flexibility in VO policies

What we want to achieve ?

Users, service administrators

Ease of use

Xtreem

Enabling Linux for the Grid

- Simple login as a Grid user in a VO
- The Grid should be as much as possible invisible
- Posix interface as far as possible
- Secure and reliable application execution
 - Fine-grained control of resource access
 - Accurate monitoring of application execution
- High performance
- Ubiquitous access to services, applications & data from mobile devices

- Application, service programmers
 - Linux applications should run with little (no) modifications
 - Grid applications should run with little (no) modifications
 - XtreemOS functionality must be provided to applications

- Linux distribution including Grid support
 - Transparent remote application execution
 - Integration of Grid level authentication with system level authentication
 - Ease of management and use
- Three flavours of XtreemOS in contrast to most Grid middleware targeting machines exploited with a batch system
 - PC, clusters, mobile devices
 - Single system image clusters
 - Kerrighed Linux based SSI

Scalable VO management

Xtreem

Enabling Linux for the Grid

- Independent user and resource management
- Interoperability with VO management frameworks and security models
- Customizable isolation, access control and auditing
- Distributed application management
 - No global job scheduler
 - Resource discovery based on an overlay network
- Grid file system federating storage in different administrative domains
 - Transparent access to data

On-going work

Very Dynamic VOs

- Created automatically for the duration of an application/workflow
 - Multi-users
- Lightweight configuration of resources
- Predefined policies (VO-based)
- Interoperability
 - GridShib (Shibboleth)

Thank you !

Questions ?

1

http://www.xtreemos.eu

XtreemO

Enabling Linux for the Grid

To contact us: contact@xtreemos.eu

Second open source XtreemOS release planned in Summer 2009

Public Deliverables related to Security and VO Management in XtreemOS

 All deliverables in http://www.xtreemos.org/publications/plonearticlemultipage.20 08-06-26.0232965573/public-deliverables

Security services

- D3.5.11 3rd specification and design of security & VO services
- D3.5.5 First prototype of implementation of security services
- D3.5.4 Second draft specification of XtreemOS security services
- D3.5.3 First draft specification of XtreemOS security services
- D3.5.2 Security requirements for a Grid-based OS download
- D3.5.1 State of the art in the security for OS and Grids

Public Deliverables

Node level VO support mechanisms

- D2.1.6 Evaluation of Linux native isolation mechanisms for XtreemOS flavours
- D2.1.5 Design and Implementation of Advanced Node-level VO Support Mechanisms
- D2.1.4 Prototype of the basic version of Linux-XOS
- D2.1.2 Design and implementation of basic version of node-level VO support mechanisms
- D2.1.1 Linux XOS specification

Other deliverables related to security in XtreemOS

- D3.5.10 1st report on modelling, evaluation and testing for XtreemOS Security Assurance
- D3.5.8 Specification of application firewall
- D3.5.7 Security for the XtreemFS File System
- D3.5.6 Report on formal analysis of security properties

C. XtreemOS tutorial at INRIA/EDF/CEA joint summer school

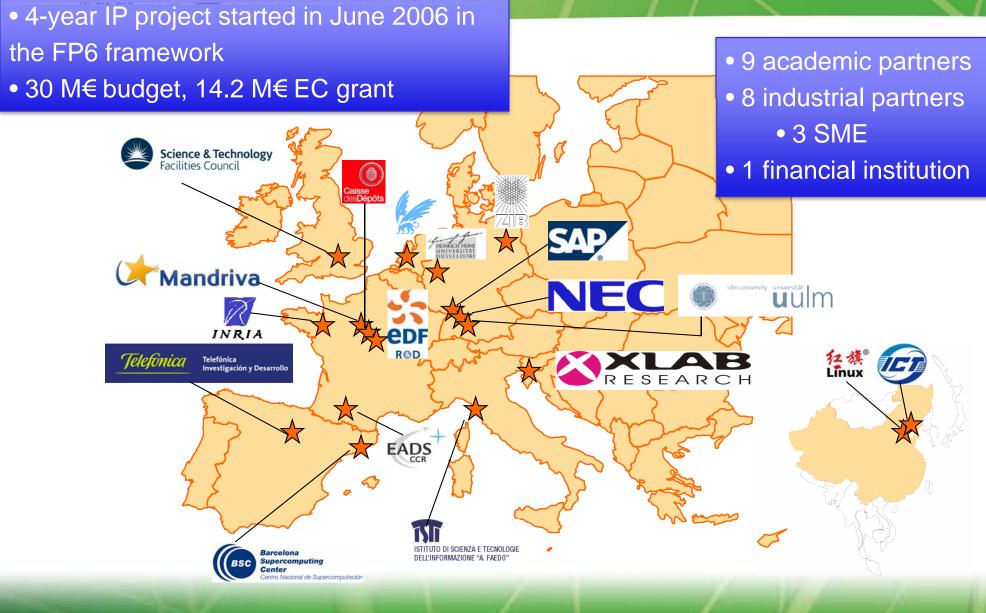
The summer school was organized near Paris in June, 2009.

Computing School 2009 CEA-EDF-INRIA

XtreemOS

Christine Morin, INRIA Rennes-Bretagne Atlantique XtreemOS scientific coordinator

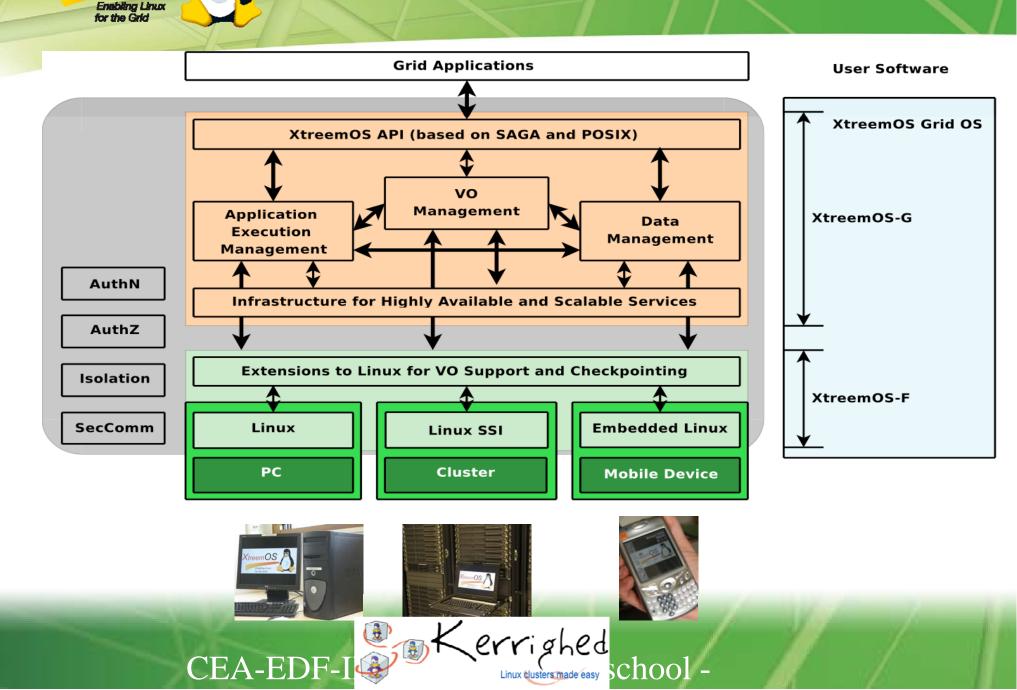
June 16, 2009


Information Society

XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576

XtreemOS European Project

- XtreemOS is a distributed operating system for Grids
- Targets
 - Large-scale highly dynamic grids spanning multiple administrative domains
 - Large number of heterogeneous resources
 - Large number of users
 - Ease of use, management and programming
 - Posix/Unix interface for users & programmers
 - Efficient, reliable and secure application execution
 - Legacy applications
 - Grid applications (SAGA)


A comprehensive set of cooperating system services providing a stable interface

for a wide-area dynamic distributed infrastructure composed of heterogeneous resources and spanning multiple administrative domains

- Two fundamental properties: transparency & scalability
 - Bring the Grid to standard users
 - Scale with the number of entities and adapt to evolving system composition
- Scalability & dependability of XtreemOS system
 - Distribution, replication, migration of XtreemOS services
 - Overlay as underlying communication system

XtreemOS Architecture

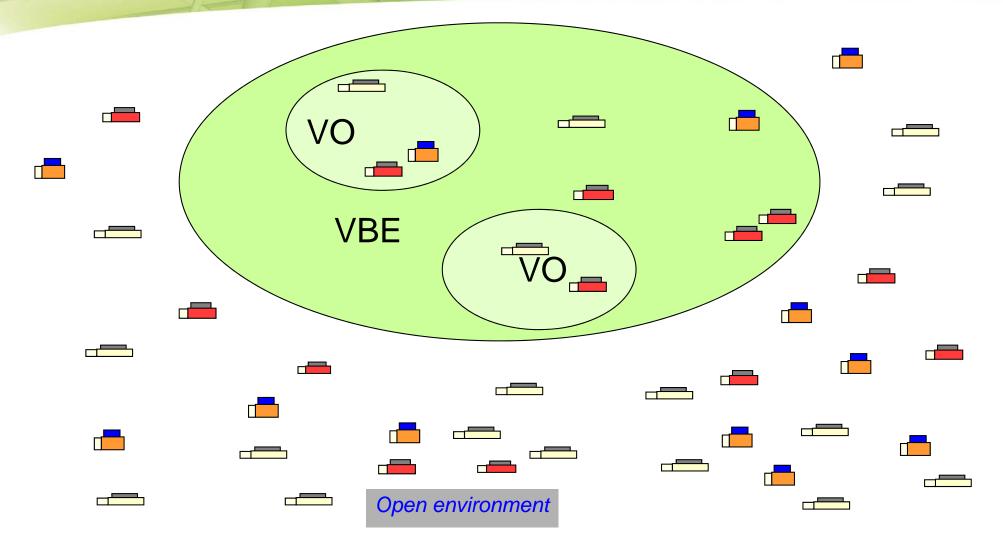
XtreemOS

XtreemOS Grids

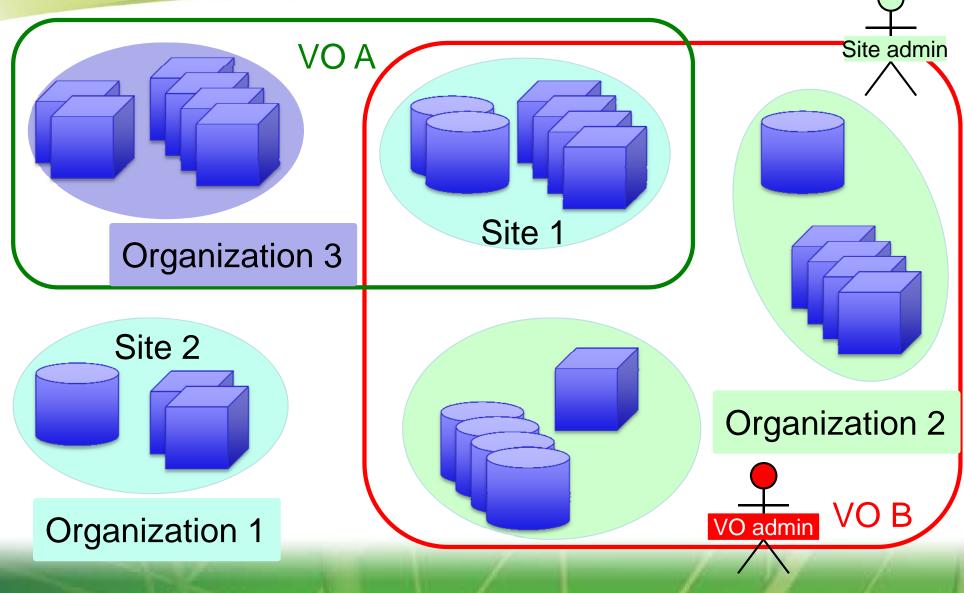
Virtual Organization (VO)

XtreemO

Enabling Linux for the Grid


- VO = set of users that pool resources in order to achieve common goals - Rules governing the sharing of the resources
- A VO can be seen as a distributed organization which has the task of managing access to resources that are accessed through computer network and located in different domains

Virtual Breeding Environment (VBE)


- VO are created in the context of a Virtual Breeding Environment (VBE)
- A Virtual Breeding Environment is composed of users and service providers. It provides user and service provider registration, certificate management, and VO lifecycle management.

CEA-EDF-INRIA Computing school - June 16, 2009

VBE and VO

Virtual Breeding Environments – VBE

- Provide security based on trust
 - Services running on behalf of a VBE trust each other
 - Trust established through cryptography
 - Secure communications
- Provide means to manage VOs in a scalable way
- Authorization based on node-level and VO-level policies

Actors in XtreemOS Grids

- VBE administrator
 - VO life cycle
 - User registration
 - PKI infrastructure
- VO administrator
 - Manage VO models (groups, roles, capabilities)
 - Manage user credentials (attributes)
 - Manage VO membership
 - Define VO policies

Actors in XtreemOS Grids

Site/domain administrator

- Resource administrator (eg. computing & storage resources)
- Provide resources to VOs
- Local policies for resource access & usage
- Resource owners always in control
- Autonomous resource management
- End Users

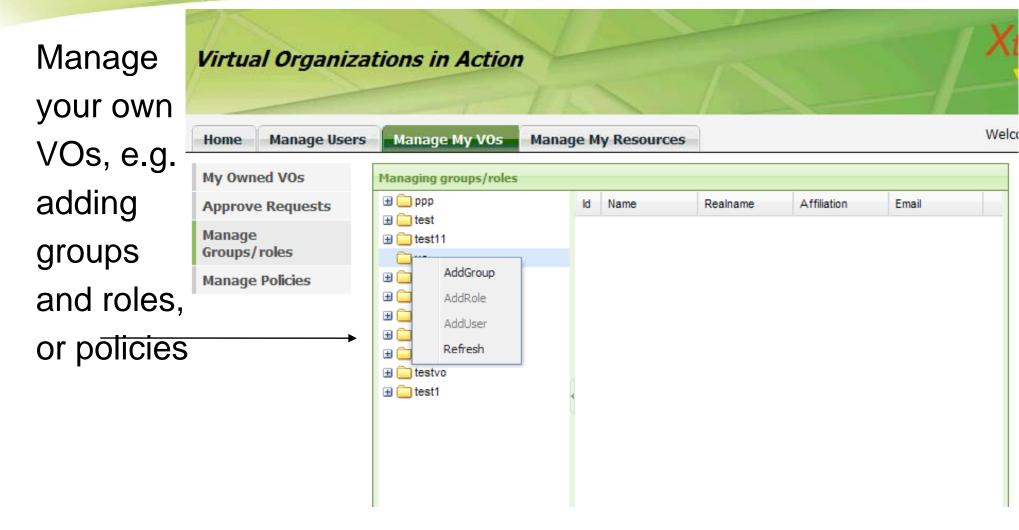
XtreemO

- First need to register to a VBE
- Create VO and/or register to VOs (in the scope of their VBE)

Administration through the distribution of

- Identity certificates (X.509)
- Attribute certificates
 - Bind credentials to identities

to users and resources


Web frontend, VO Creation (end-user)

VOLife -Frontend

XtreemOS

Virtual Organiza	tions in A	ctio		XtreemOS Enabling Linux for the Grid	
Home Manage Users	Manage My	V0s	Manage My Resources	Welcome to VoLifeCycle , admin [logout]
Create a VO	Create a VO				
Join a VO	110 11			1	
My Pending Requests	VO Name: Options:	🗆 Aut	omatic approving of requests(disabled)		
Get an XOS-Cert	VO Description:	B	″⊻│А҈ѧ゙│▲▾ ≝҈▾│≣≡ ≣ ≡		
Generate new keypair					
About me					
Change Password					
Logout					
			Create Cancel		

Manage VOs (VO admin)

XtreemOS

Joining a VO (end user)

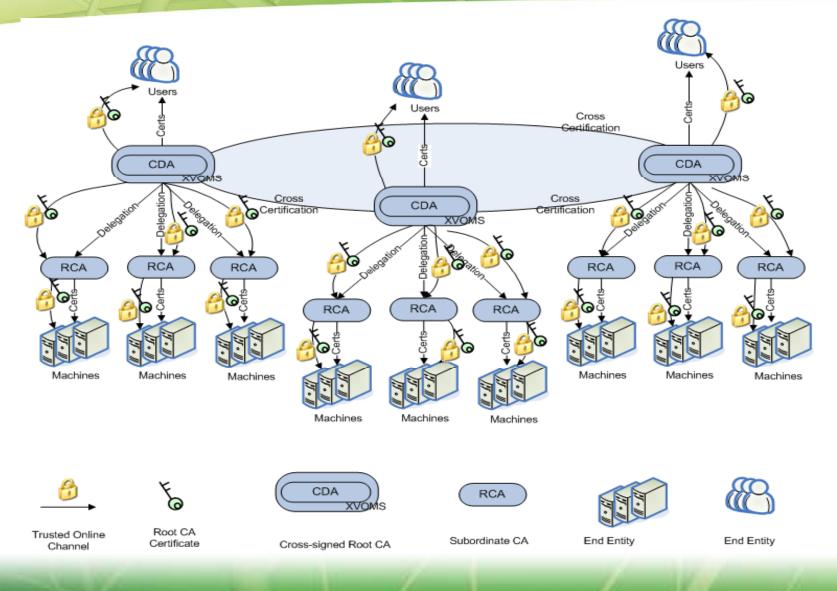
Virtual Organizations in Action

Select VO			T				
	Home Manage Users	Manage My VOs Ma	anage My Resources			W	elcome t
and	Create a VO	Join a VO					
cond	Join a VO	Search: DoinVO LeaveVO Refresh					
send	My Pending	GVID	VO Name	V0 Owner	ls Member	Description	
	Requests	2fd9bc8f-a8a4-4195-85d0	272d1f63f093 testvo	admin f	false		
joining request s	Get an XOS-Cert	4ecc77d7-c153-4a57-8430			false		
	Generate new	9d2dbf39-a754-4cc8-9b00			false		
request s	keypair	f7206ce2-4d38-4432-9100			false		
	About me	f39c6568-35c1-4f50-b7b8			false false		
	Change Password	94c0658a-4d15-4f15-b9aa			false		
	Logout	9d705a80-6fcf-4a9c-a666			false		
		276683d2-ed17-40d6-8f19	-d52d1aa969b1 ppp	admin f	false		
		036bdc25-d01d-46b4-a56a	-99a2aededfa0 xc	admin f	false		
		baca5795-823c-43b3-890b	-3a556fef9290 test	admin t	true		

Manage VO Resources (site admin)

Manage resources in a VO

Manage way vos Manage wy vos Register a RCA Managing RCA Resources Add a Resources AddResource DelResource Refresh Approve Resources Id Name RCA VOs Desc Get Machine Id Name RCA VOs Desc		F	TAN		
Add a Resources Add a Resources AddResource DelResource Refresh Approve Resources Id Name RCA VOs Desc	Home Manage Users	Manage My VOs	Manage My Resources		Wel
Approve Resources Id Name RCA VOs Desc Get Machine Id Name RCA Vos Desc	Register a RCA	Managing RCA Resource	ces		
Get Machine	Add a Resources	Search:		AddResource DelResource Refres	h
	Approve Resources	ld Name RC	CA VOs Desc		
	Get Machine Certificates				
Search: AddToVO Refresh		Search:		AddToVO Refresh	
Id Name Is Memember Owner Desc		ld Name	Is Memember Owner Desc	c	
1 testvo false admin		1 testvo	false admin		
2 testvi false admin		2 testvi	false admin		
3 testes false admin		3 testes	false admin		
4 ette false admin			false admin		
5 test11 false admin		C COLL			_


Virtual Organizations in Action

- CDA: cross-certified root CAs for VO users & RCA certification
- RCA: subordinate CAs for resource certification
- Identifiers & attributes

Trust Model

CEA-EDF-INRIA Computing school - June 16, 2009

Namespaces

- Global namespaces
 - GUID, GVID, GGID, GNID
 - Identifiers
 - Global IDs are unique
 - Users and nodes have X.509 certificates
 - Identity stored in the distinguished name (DN)
- Node-level (local to resources) namespaces
 - OS users (UID/GID)
 - Files (inodes)
 - Processes (PIDs)
- VO namespaces
 - Groups, role, capability

- On-the-fly mapping between namespaces
- Mapping between different namespaces managed by local service xos-amsd
 - GUID ★ UID
 - GGID ★ GID
- With the support of nsswitch
 - Is -1 shows the GUID of the file owner

User Session Service

User session services

Xtreem

- Started when the user logs in
- In charge of validating user credentials
- Trusted by XtreemOS operating system services
- Bridging the user space with the operating system space
- All grid requests go through the user session service
- Support untrusted client nodes
- Provide Single-Sign-On
- Provide Delegation
 - Can be replicated on resource nodes

Isolation, Job context

Job context created

- When a user session is opened on some resource
- Can be

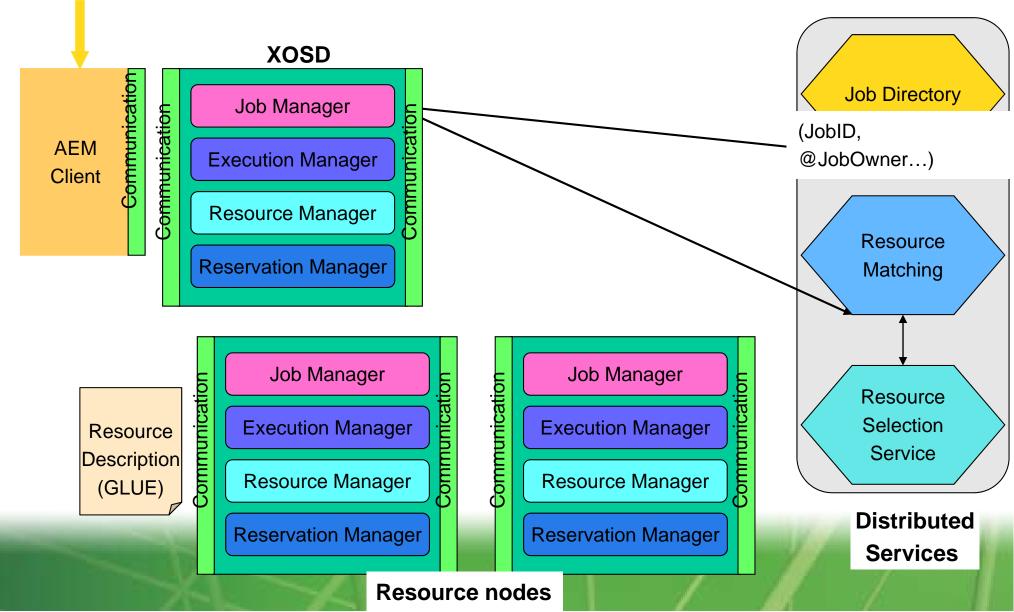
XtreemO

- Simple Unix account
- Control groups
 - Imit/protect resource usage
 - Accounting, billing
- Namespaces (PID, user, net, ...)
 - Restrict visibility from job context
 - Net namespaces restrict access to Internet
- Containers (~ cgroups + namespaces)
- Virtual machines

- pam-xos: modules in charge of authentication, authorisation and session management
- ssh-xos: extends ssh authentication with XOS certificates
 - Provides same account mappings as for jobs

- JSDL file to describe the application & its resource requirements
 - Will be made transparent in future versions of XtreemOS
- No global scheduler
 - Job manager service created for each job
- Resource discovery on peer-to-peer overlay
 - Structured overlay for faster access to requested resources
 - Resource negotiation
 - VO policies checked during discovery

Features


Enabling Linux for the Grid

Xtreem

- No assumption on local node RMS
 - AEM can be used without any batch system
- Job "self-scheduling"
 - Best effort resource allocation strategy
- Resource reservation & co-allocation
- Unix-like job control
- Monitoring & accounting
 - Accurate and flexible monitoring of job execution
- Support for interactive applications
- Interface for workflow engine
- Checkpointing service for grid jobs

AEM Architecture

Checkpointing Service

- Goal: checkpointing and restart for grid jobs
 - Fault tolerance
 - Migration (scheduling / load balancing)

Checkpointing Service

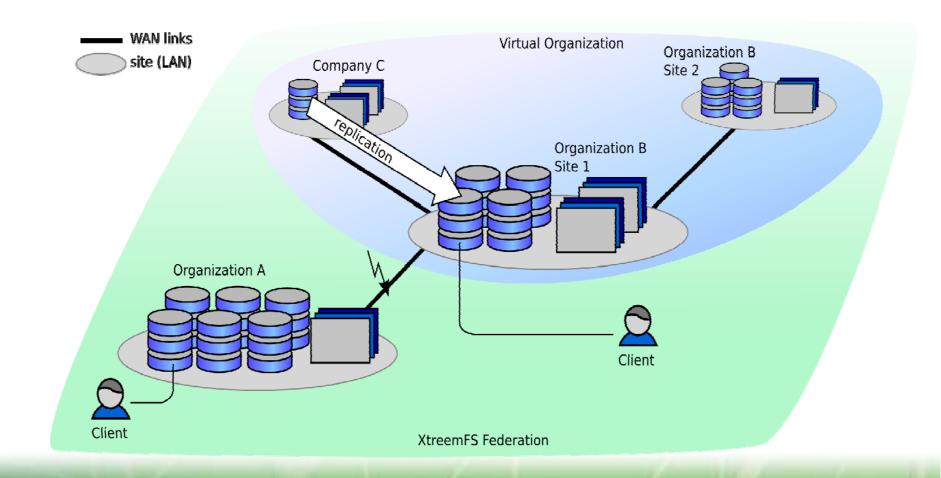
CEA-EDF-INRIA Computing school - June 16, 2009

Checkpointing protocols for Grid applications

- Coordinated checkpointing
- O2P protocol (optimistic message logging protocol)

Kernel checkpointers

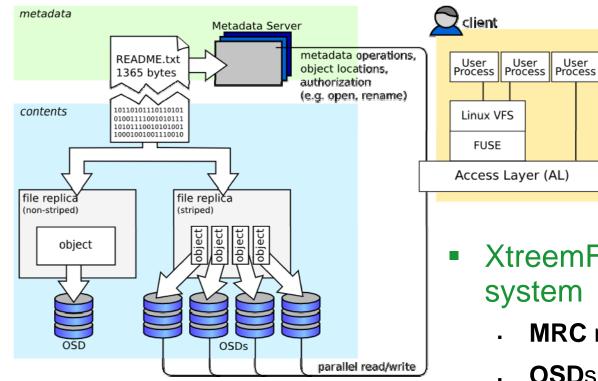
- BLCR & Kerrighed checkpointer
 - Adapted for Grid usage (callbacks)
 - Steps for applications running on several Grid nodes
- Checkpointers based on Linux kernel virtualization mechanisms
 - containers, name spaces...
- Security


XtreemC

- Checkpoint storage
 - XtremFS
 - Garbage collection

XtreemFS: A Grid File System

Federating storage in different administrative domains


CEA-EDF-INRIA Computing school - June 16, 2009

XtreemFS Features

- Provide users a global view of their files in a Grid
- Transparent location-independent access to data
 - Data storage in different administrative domains
 - Grid users from multiple VO
- Consistent data sharing
- Access control based on Grid attributes
 - VO member credentials
- Each XtreemOS user has a home volume in XtreemFS

XtreemFS: Architecture

XtreemOS

- XtreemFS: an object-based file system
 - MRC maintains metadata
 - **OSD**s store file content
 - Client (Access Layer) provides client access

XtreemFS Features

POSIX compatible file system

- File system API
- Behaviour as defined by POSIX or local file system
- Advanced metadata management
 - Replication
 - Partitioning
 - Extended attributes and queries

XtreemFS Features

Replication of files

Xtreem

- primary/secondary with automatic failover
- fully synchronous to lazy data replication
- POSIX compatible by default
- Striping (parallel read and write)
- RAID and end-to-end checksums
- Client-side caching and cache consistency
- Autonomous data management with self-organized replication and distribution
 - Access pattern-based replica management (RMS service)

Conclusion

Validation with a set of reference applications in progress

- Aladdin/G5K large-scale platform
- Permanent test bed

On-going research activities

- Advanced features
 - Accounting, isolation
 - Very dynamic VO
 - High availability of XtreemOS critical services
- XtreemOS & cloud computing
 - XtreemOS as a software infrastructure for cloud federations
 - Exploitation of virtual machines dynamically provisioned from clouds in an XtreemOS Grid

More about XtreemOS

Open software Development

- http://gforge.inria.fr/projects/xtreemos/
- Second major release under preparation (GPL/BSD)
 - Packaged for Mandriva & RedFlag Linux distibutions

Information

- http://www.xtreemos.eu
- Public deliverables and technical reports

Contact

- info@xtreemos.eu
- Christine.Morin@inria.fr

Meet XtreemOS Team

XtreemOS Summer School, Oxford, UK

September 7-11, 2009

XtreemC

- Registration open, see http://www.xtreemos.eu/xtreemosevents/xtreemos-summer-school-2009
- Demonstrations on XtreemOS booth
 - June 23-26, 2009: ISC '09, Hamburg, Germany
 - November 14-20, 2009: SC '09, Portland, Oregon, USA
- http://www.xtreemos.eu
- http://gforge.inria.fr/projects/xtreemos/

Thank you for your attention

Questions?

CEA-EDF-INRIA Computing school - June 16, 2009