
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

XtreemOS-G for MD/MP
D3.6.6

Due date of deliverable: March 31st, 2010
Actual submission date: April 19th, 2010

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.6
Task number: T3.6.6

Responsible institution: Telefónica I+D
Editor & and editor’s address: Santiago Prieto

Telefónica I+D
Parque Tecnológico de Boecillo

47151 Boecillo (Valladolid)
SPAIN

Version 1.0 / Last edited by Alvaro Martínez / April 15th, 2010

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 12/02/10 Telefónica I+D Telefónica
I+D

Document created

0.2 25/02/10 Telefónica I+D Telefónica
I+D

First contributions

0.3 22/03/10 Telefónica I+D Telefónica
I+D

Draft version for internal review

1.0 15/04/10 Telefónica I+D Telefónica
I+D

Final version

Reviewers:
Massimo Coppola (CNR), Jan Stender (ZIB)

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T3.6.6 Implementation and optimization of advanced services in mo-
bile devices (XtreemOS-G for MD/MP)

TID∗, BSC

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary

The XtreemOS project aims at integrating native Grid functionalities into Linux
operating systems and addressing the heterogeneity of current Grid computing
technology, from clusters to mobile devices (MDs). The objective of this deliv-
erable is the implementation of the advanced G-layer for the XtreemOS Mobile
Device flavour, which includes PDAs like Nokia N8x0 and mobile phones like
Nokia N900. For this implementation, and following the specifications given in
D3.6.4 [7] and the design explained in D3.6.5 [4], we have worked on different
lines, firstly updating XtreemOS-MD G-layer to make it compatible with the last
versions of XtreemFS and AEM services.

The inclusion of “resource sharing” capabilities is probably the most important
change respect to the G-layer basic version, converting the mobile device in not
just a simple Grid client, but also becoming a special node of the Grid, sharing
resources like the I/O devices and network access and also sharing data files on
demand. For this new data sharing functionality, and in order not to compromise
the XtreemFS security model, a special OSD (called OSDProxy) has been added
to the Grid architecture, acting as a proxy between the non-trusted mobile device
and the rest of the trusted infrastructure.

Also the smartphones support offered in this advanced version it’s a very in-
teresting feature, opening the access to XtreemOS-MD to mobile phones like the
Nokia N900 (based on Maemo 5), and not just limiting it to PDAs based on Maemo
4 as it was the case with the basic version.

Other additional features have been incorporated, like the modification of AEM
in the mobile to convert it in a pure-client, or the development of a new security
plug-in supporting PAM (Pluggable Authentication Modules). The latter allows
a better integration with other SSO systems, and it also offers additional authen-
tication mechanisms, like Bluetooth pairing, etc. whose client part were already
implemented by layer F.

Finally, note that even if we have initially worked on the Nokia N900 sup-
port, following the priorization criteria identified in deliverable D2.3.6 [5], the
XtreemOS Mobile Device flavour software is also portable to other Linux-based
platforms like Ubuntu (to be used on netbooks for example) and others.

Contents

Glossary 5

1 Introduction 7
1.1 Document structure . 8

2 Overview of the advanced services implementation for MDs 9
2.1 Design review . 9

2.1.1 AEM service . 9
2.1.2 Data management service 9
2.1.3 VO management and security 10
2.1.4 Resource Sharing . 10

2.2 Final architecture . 10

3 AEM service 12
3.1 Introduction . 12
3.2 General architecture . 12
3.3 API definition . 13
3.4 Implementation . 13
3.5 Installation and usage . 13

4 Data management service 14
4.1 Introduction . 14
4.2 General architecture . 14
4.3 API definition . 15
4.4 Implementation . 15
4.5 Installation and usage . 16
4.6 Vivaldi feature . 17

4.6.1 Vivaldi in the OSDs . 17
4.6.2 Gathering the coordinates 18
4.6.3 Vivaldi in the clients . 18

5 VO management and security 20
5.1 Introduction . 20
5.2 General architecture . 20

1

IST-033576 D3.6.6

5.2.1 Architecture of PAM plug-in 21
5.2.2 Architecture of PIN based authentication 22

5.3 API definition . 22
5.4 Implementation . 23
5.5 Installation and usage . 23

6 Resource sharing 25
6.1 File sharing . 25

6.1.1 Introduction . 25
6.1.2 General architecture . 25
6.1.3 API definition . 26
6.1.4 Implementation . 28
6.1.5 Installation and configuration 31

6.2 I/O device sharing . 33
6.2.1 Introduction . 33
6.2.2 General architecture . 33
6.2.3 API definition . 35
6.2.4 Implementation . 37
6.2.5 Installation and usage . 43

6.3 Resource sharing configuration tool 44
6.3.1 Introduction . 44
6.3.2 Configurable parameters 44

7 Conclusions 47

References 49

XtreemOS–Integrated Project 2

List of Figures

2.1 XtreemOS-MD advanced version architecture 11

6.1 Share file command . 26
6.2 Remove file command . 27
6.3 Make directory command . 27
6.4 Remove directory command . 28
6.5 Move command . 28
6.6 Data request . 29
6.7 New connection for sharing requests 30
6.8 Share file command . 31
6.9 System for publishing information on SRDS 34
6.10 Schema of GPS information as metric values 36
6.11 Schema for publish message in XML format 38
6.12 Example of publish messages . 39
6.13 Schema for queries in XML format 40
6.14 Example of queries . 41
6.15 3G Sharing Schema . 42
6.16 GPS Sharing Schema . 43
6.17 Resource sharing configuration tool 44

3

List of Tables

6.1 Publishing SubSystem API operations 35
6.2 GPS sharing SubSystem API operations 37

4

Glossary

ARM Advanced RISC Machine

API Application Programming Interface

CDA Credential Distribution Authority

CN Common Name

DIR XtreemFS Directory Service

EGID Effective Group Identifier

EUID Effective User Identifier

GID Group Identifier

GPS Global Positioning System

MD Mobile Device

MRC XtreemFS Metadada and Replica Catalog

OSD XtreemFS Object Storage Device

PAM Pluggable Authentication Modules

PDA Personal Digital Assistants

RSD Resource Sharing Daemon

SRDS Scalable Resource Discovery Service

SSH Secure Shell

SSL Secure Socket Layer

SSO Single Sign On

TCP Transport Control Protocol

TLS Transport Layer Security

5

IST-033576 D3.6.6

UID User Identifier

UUI Universally Unique Identifier

VO Virtual Organization

WP Work Package

XtreemOS-MD XtreemOS for Mobile Devices

XtreemOS–Integrated Project 6

Chapter 1

Introduction

This document presents the implementation of the advanced version of XtreemOS-
MD services layer (G-layer). This advanced version, respect to the first version
previously released, includes support for mobile phones like the Nokia N900 and
also includes new functionality like the resource sharing (completely new in the G-
layer advanced version) and additional features in Security, AEM and XtreemFS
services. The software could also be ported by 3rd parties to other Linux-based
mobile device platforms (MobLin, LiMo, Android, etc.) as already stated in D2.3.6
[5].

The resource sharing functionality, which was started in the F-layer with the
implementation of the resource sharing daemon, has been now completed in the
G-layer, offering a set of capabilities including data sharing and I/O and network
device sharing.

Apart from the smartphone support and the resource sharing new feature, some
improvements related to Security, AEM and XtreemFS has been implemented for
this G-layer advanced version, and will be documented in following chapters. As
a quick summary:

• AEM server part has been removed (now it’s a pure client) but an additional
monitoring callback has been included to keep the monitoring feature present
in previous versions without needing asynchronous notifications. This way,
the previously port opened on the MDs is no more needed. Also, the commu-
nication with SRDS in order to publish the resources shared by the mobile
devices has been implemented.

• An special OSD (OSDProxy) has been implemented to act as a proxy be-
tween the non-trusted mobile device and the rest of the trusted infrastructure,
so that the XtreemFS security model is not compromised when the mobile
device is sharing files thanks to the new on-demand file sharing feature of-
fered.

• A new plug-in architecture to support PAM has been also included and the
CDAProxy has been consequently modified. This way we solve the server

7

IST-033576 D3.6.6

part for the new authentication mechanisms and SSO integration client part
which was already implemented in layer F.

1.1 Document structure

The document is structured as follows:

• Chapter 2 provides an overview of the architecture and the advanced ser-
vices implemented for mobile devices that will be detailed in the following
chapters.

• Then, Chapter 3 deals with the implementation of the modifications related
to AEM, especially focusing on the new monitoring callback and API to
publish the shared resources on the SRDS

• Next, Chapter 4 focus on Data Management and the OSDProxy provided
to permit the data sharing functionality. A special section for the Vivaldi
algorithm is also included here.

• Chapter 5 deals with VO management and security, emphasizing the PAM
support and the new plug-in architecture to support it

• Chapter 6 analyzes in detail the Resource Sharing feature, describing sepa-
rately the different kinds of shared resources offered: on-demand file shar-
ing, GPS sharing (as a particular case of I/O devices sharing) and network
sharing.

• We finalize with Chapter 7 by giving the final conclusions to WP3.6 and
more concretely to this deliverable.

XtreemOS–Integrated Project 8

Chapter 2

Overview of the advanced
services implementation for MDs

This chapter introduces a high level vision of the advanced services implementation
for mobile devices. We first present a comprehensive overview of the requirements
and specifications already identified in previous deliverables and then we will show
the high-level architecture of the final XtreemOS-MD advanced version. Later
chapters will address the specific implementation issues, service by service.

2.1 Design review

2.1.1 AEM service

Monitoring with local buffers and callbacks. The monitoring with buffering
with the metrics is an important component in AEM. It provides an easy way to
store and check metrics values reducing the overhead and overload of checking it
every x seconds. Callbacks provides a way to receive notifications of events (like
job finished). In the callbacks case the C-XATI implementation introduced changes
over the Java version.

Resource reservations. Resource reservations can be automatic or manual, in
both cases no modification is needed

Dependency trees. Dependency trees provide relations between jobs. User can
check all dependency tree in xps or other commands.

2.1.2 Data management service

Vivaldi. The Vivaldi algorithm is now supported in the mobile devices, being
possible to locate the MDs in the Vivaldi space, and also using the Vivaldi coordi-
nates to obtain the XtreemFS closest replica to the MD.

9

IST-033576 D3.6.6

On demand file uploading and transparent file sharing. Those new features
are possible thanks to the possibility of off-line mode operation and the data sharing
capability offered by the new Resource Sharing module

2.1.3 VO management and security

Integration of legacy SSO with CDAProxy. The CDAProxy has been modified
to support the new plug-in architecture provided to support PAM. The client part
os this feature was already covered by the F-layer advanced version.

2.1.4 Resource Sharing

The advanced version of F-layer developed the bases for this resource sharing ca-
pability. G-layer focuses on the proxy clients developed for the different kinds of
resource sharing (and running on trusted nodes), using the APIs provided by the
resource sharing daemon.

Data sharing. Offering the local files stored in the mobile device as resources
accessible in the Grid.

I/O Device sharing. And concretely sharing the GPS (if available in the MD) to
other Grid users.

Network sharing. To allow sharing the MD’s 3G connection to other XtreemOS
users.

2.2 Final architecture

Figure 2.1 shows the architecture of the advanced version of Xtreemos-MD. In
comparison with the basic version, already presented in deliverable D3.6.3 [3], the
main architecture changes are the addition of the context-awareness and resource
sharing modules. Context-awareness was fully developed in the F-layer, and ex-
plained in D2.3.7 [6], whereas resource sharing was partially developed in F-layer
(and also explained in D2.3.7) and completed in this G-layer.

The following chapters provide the specific implementation details grouped by
the main services: AEM, XtreemFS, Security and Resource Sharing.

XtreemOS–Integrated Project 10

IST-033576 D3.6.6

Figure 2.1: XtreemOS-MD advanced version architecture

XtreemOS–Integrated Project 11

Chapter 3

AEM service

3.1 Introduction

AEM is the component that provides the execution and management of jobs in
XtreemOS. More details of the AEM architecture can be found on deliverable
D3.3.7 [8].

3.2 General architecture

The general architecture of AEM includes an XOSD daemon hosting a set of dis-
tributed services. For example, in a core node we can find JobManager, and Reser-
vationManager. In a resource node, we can find ExecMng and the AllocationMan-
ager. Clients and interfaces to access the nodes are automatically generated from
the code. XATI and C-XATI are the generated client interfaces, for Java and C
clients.

Some of the modifications included for mobile devices are the elimination of
the server side (open an extra port) becoming a pure client. Mobile devices greatly
benefit of this change. Regarding callbacks, this pure client change produced that
the users can’t get notifications if they are not connected. To solve this, the client
can fork and do the addMonitoringCallbackMD call and wait until the event trig-
gers.

On the other hand, the AEM offers a new functionality to support the mobile
resource sharing (Connectivity and GPS information):

• Publishing the mobile resource information on SRDS system through XAT-
ICA. The mobile device sends its resource information (status, GPS position,
availability...) in XML to AEM that process the information and sends it to
the SRDS system in a transparent way for the mobile device.

Other features are ported directly to mobile devices without changes.

12

IST-033576 D3.6.6

3.3 API definition

The specific API definitions for mobile devices are the next ones:

int addMonitoringCallbackMD(const char* __jobId,
const MetricEvent __metricEvent,const char* __userCtx,
int* returnValue);

public Integer pushMDinfo(String Info)
public String retrieveMDinfo(String Query)

3.4 Implementation

Client implementation of C-XATI for mobile devices does not allow the server
behavior it had in previous releases and thus the Grid cannot send asynchronous
events to it. To overcome this effect while keeping all the specified function-
alities, a new function has been added to the API. This is the aforementioned
addMonitoringCallbackMD.

The functionality of this service invocation is the same as the previously avail-
able addMonitoringCallback. The only difference is that this new one
blocks the client until the callback is triggered, while the previous one returned
immediately allowing the definition of a callback function.

The proposed way to use this mechanism is through a new thread at the client
side per each desired callback. This new thread would just set the callback, which
blocks it until triggered, and invoke the actual callback function immediately after-
wards.

At server side there is no blocking: DIXI decouples requests from replies in a
manner that the implementation can delay the reply of a service method invocation
just by storing the context of that request. This has been already used in other
method implementations such as the jobWait call, which blocks the client until
job finalization.

3.5 Installation and usage

Monitoring is used through XCJobMng.h C-XATI lib and MD publishing info is
used through XCResMng.h. We use ResMng as it is easier for the mobile devices
to use ResMng that an extra header (for SRDS). Also development is easier this
way as all C-XATI services are created in the WP3.3 part of the code.

XtreemOS–Integrated Project 13

Chapter 4

Data management service

4.1 Introduction

XtreemOS-MD on-demand data sharing allows mobile devices to share files with
other users, taking advantage of XtreemFS features, like replication for instance,
but not compromising the XtreemFS security model, which specifies that OSD
servers should run only on trusted nodes. To this purpose, a special software run-
ning in the mobile device notifies a proxy each time a new file is available to share;
this file is then uploaded to XtreemFS, being OSD Proxy responsible for it. The
first time a fragment of the file is required, the proxy contacts the mobile device
to retrieve that fragment and then replicate it (avoiding the need to repeat the op-
eration if the fragment is requested in the future). This chapter is dedicated to
the client part of the on-demand data sharing feature, while the server side will be
explained in chapter 6.

4.2 General architecture

The architecture of client-side data sharing is already described in deliverable [6].
Both Resource Sharing Daemon and libxos_notifydirchange.so
library, detailed in Data Sharing section of that deliverable, cover an important part
of the implementation.

Client side implementation of data-sharing involves the creation of two new
modules in G-Layer:

• A inetd-like service, that receives a request for a file fragment and sends the
data to OSD Proxy.

• A sharing module that is responsible of detecting changes in a user config-
urable shared folder and contact with OSD Proxy.

14

IST-033576 D3.6.6

4.3 API definition

There are not public API with this software.

4.4 Implementation

Inetd-like service implementation is simple because most details are implemented
by Resource Sharing Daemon: it only parses a request for a fragment specified by
file name, offset and length and writes to standard output the data preceded by the
length. On the other hand, data sharing module implementation is more complex
and needs a more detailed explanation.

When data sharing module starts, it first must compare the sharing folder with
a hidden folder where the XtreemFS shared volume is mounted. This step is re-
quired, as users may share a folder that was not initially empty. It is required also
because files and directories may be created, deleted or moved by the user while
data-sharing is not enabled. This initial synchronization compares recursively both
folders; if a set of files and/or folders are in sharing folder but not in XtreemFS
shared volume, module contacts with OSD Proxy to replicate the filesystem struc-
ture and share the new files. If files and/or folders are available in XtreemFS shared
volume but not in sharing folder, module contacts with OSD Proxy to remove the
missing contents. Finally, it some file is different between both folders, file is first
removed and then added again: file changes are checked comparing the last modi-
fication date.

Once the initial synchronization ends, the data-sharing module detects the pos-
sible modifications in the filesystem using libxos_notifydirchange.so library. The
following situations are monitored:

• A file is closed after a write operation: this event occurs when copying a file
to the shared folder and when creating a new file directly in the shared folder
(after closing the file and setting the privileges, as XtreemFS only supports
replication of read-only files). In this case, a notification is sent to the OSD
Proxy indicating that a new file is shared. If the file was already uploaded to
the OSDProxy, and was modified locally by the file owner, the OSD Proxy
is responsible for firstly deleting the file and then adding it again.

• A file or folder is moved into the sharing folder. This event implies a similar
interaction with the OSD Proxy than the previous case.

• A file or folder is deleted locally: a notification is sent to the OSD Proxy, to
remove the file stored in the XtreemFS. If a folder is removed, there will one
notification for each file included in it.

• A file or folder is moved out of the sharing folder. A notification is sent to the
OSD Proxy to remove the concrete file from the distributed file system. The

XtreemOS–Integrated Project 15

IST-033576 D3.6.6

process will be recursively done for folders containing subfolders or more
than one file.

• A file or folder is renamed or moved inside the sharing folder. A notification
is sent to the OSD Proxy, which should then request the real path file to the
mobile device (as the OSD Proxy, differently from ordinary OSDs, stores the
filenames and not just the file IDs.

4.5 Installation and usage

Configuration is saved in file /etc/xos/sharingservices/filesharing.conf.
The following is a example of configuration file:

[proxy]

host=10.95.42.89
port=42643
#uuid=7ebea9ea-14e5-45c4-b3fc-5f9b02810319

[persona]
uid_service=-1
gid_service=-1
uid_module=-1
gid_module=-1

[availability]
enable=true
disable_if_not_wifi=false
disable_if_battery_less_than=0
#disable_if_status_is

[approval]

ask_request_approval=false
notify_new_request=false

[config]

sharingdir=xossharing
sharingdir_mount=.xtreemfs_shared_sync

All sections except config are common between all resource sharing modules
and are already documented in Data Sharing section of deliverable [6].

XtreemOS–Integrated Project 16

IST-033576 D3.6.6

All module specific parameters in section config are intended only for integra-
tors and deployers, as alternative to modify the source code. It is not expected that
user modifies these values and therefore configuration tool hides them. Parame-
ter sharingdir is the sharing folder and sharingdir_mount is the folder where the
XtreemFS sharing volume is mounted. This volume is mounting automatically by
startxtreemos tool.

To install the service manually, only is needed to run make install. How-
ever, XtreemOS-MD offers this software packaged and user only need to install it
as any other native application. For example, in Nokia N800 or Ubuntu is suffi-
cient to run apt-get install xosrsd-filesharing to install this mod-
ule with all its dependencies, including a XtreemOS-MD minimall instalation. This
package is also part of the metapackage xosmd-full.

Data sharing service is started with Resource Sharing Daemon. A configuration
tool allow users to set what resource sharing modules are enabled.

4.6 Vivaldi feature

Vivaldi is a light-weight algorithm, developed by MIT, that assigns a position in
a coordinate space to every node of a network, so the distance between the coor-
dinates of two nodes predicts the real communication latency between them. This
mechanism eventually enables predicting the latency between two given nodes with
a simply mathematical calculation, with no network overhead associated.

According to the algorithm requirements, the nodes keep contacting them-
selves periodically in order to re-adjust their positions, so any possible change
in the network may be reflected. For each re-adjustment, a node contacts one of its
peers, gets its coordinates and accordingly modifies its own position, so eventually
the euclidean distance between both points is equal to the measurable round trip
time delay.

4.6.1 Vivaldi in the OSDs

Every OSD runs a dedicated stage that keeps iterating indefinitely in order to peri-
odically recalculate its position. Thereafter, it is granted that the provided coordi-
nates keep "consistent" according to the generated space. Moreover, they all keep
a cached list of OSDs from which they may choose a peer to recalculate against.
To fill that list and to keep it up to date, an OSD contacts periodically the DS (the
Directory Service is a XtreemFS service that, among other data, keeps track of
every existent OSD) and asks it to select randomly N OSDs. This way they are
able to get a set of reference nodes, while the system remains perfectly scalable.
Furthermore, this allows the nodes to avoid having to detect when an OSD goes
offline, since it is the own DS which notices that kind of event and consequently
reflects it in its list of available OSDs.

XtreemOS–Integrated Project 17

IST-033576 D3.6.6

4.6.2 Gathering the coordinates

According to the XtreemFS architecture, in the OSD, the Heart-Beat-Thread stage
uploads to the DS some information of its corresponding device every certain pe-
riod of time. Among other data, the node includes its remaining free space, the
load of its processors or its coordinates and its local error. Consequently, this is
the first time the coordinates of every OSD in the system are gathered at the same
distributed service all together.

Next, the MRC obtains, through its own service OSD-Status-Manager, all the
information contained in the DS about every registered OSD. Thus, since the first
transmission is done, the MRC has all the information known about the currently
available OSDs. It then can use that data to process the requests received from the
clients.

4.6.3 Vivaldi in the clients

In general terms, a client works in a very similar way to an OSD. It runs a dedi-
cated service that recalculates periodically its coordinates and tries to minimize the
algorithm prediction error. But there is one main difference between clients and
OSDs: clients have no influence over the position of any other node, as they are
not tracked by any system service. Every OSD is registered in the DS and hence
the rest of nodes can contact it when recalculating their position. It currently in-
fluences the rest of nodes. However, the DS keeps no track of any client, so they
cannot be contacted by other nodes, since they remain invisible to them. Therefore,
the clients can be considered as pure observers, that seek their optimal position in
the coordinate space, but whose presence does not affect the rest of nodes at any
point.

XtreemFS is supposed to be executed on an environment where OSDs keep
running during long periods of time. In this situation and depending on the char-
acteristics of the network, they may need more or less time but, eventually, they
converge to a stabilized state where the global prediction error is reasonably low.
Thus, when the clients join, they get into a consistent coordinate space. Such a
space has a set of firmly fixed nodes that may serve as landmarks, so clients are
able to find an appropriate position with only a few iterations.

In addition, for situations where the clients must be well placed since the very
first iterations, a mechanism to initialize the position of this kind of nodes has been
provided.

xtfs_vivaldi --fast-initialization <dir host>[:port] \
<path to Vivaldi coordinates output file>

Using the option –fast-initialization when executing xtfs_vivaldi, the service
ignores the coordinates contained in the coordinates file and tries to determine a
new set. In order to get an approximate location, the client first measures the RTT
against 5 OSDs randomly chosen, and takes the coordinates of the closest one,

XtreemOS–Integrated Project 18

IST-033576 D3.6.6

according to the real latencies. Next, it makes the most of the coordinates already
obtained and adjusts its position 5 times in a row, one for each pair of coordinates.
It is important to remark that the coordinates of the closest node (those used to
initialize the client’s position) are always left for the end of this process, so they
really contribute with significant information. Otherwise, the client could adjust its
position for the first time against the closest node, so the coordinates would be the
same, and eventually Vivaldi would move them away in a random direction.

According to the performed evaluations, when using "fast initialization", the
client is able to find its right position in less than 2 hours, which is less than the
half of the time required on average, when using regular initialization.

This mechanism is specially useful when dealing with mobile devices, which
are expected to drastically modify its geographical position with a higher frequency
than other types of device. In these cases, the client’s coordinates can be manually
reinitialized and thus the global performance does not get so deteriorated.

XtreemOS–Integrated Project 19

Chapter 5

VO management and security

5.1 Introduction

In [4], the main design decision about security in G-Layer was PAM (Plugable Au-
thentication Modules) support in CDAProxy. This support is important to provide
a better integration with the SSO implementation of the user’s enterprise system
(or with the SSO of the user’s ISP). Thanks to PAM support in the CDAProxy,
mobile device users can use their enterprise username and password instead of the
CDA ones.

PAM support in CDAProxy is also required for some security enhancements
obtained from [6], as Bluetooth pairing support and PIN based authentication.
Client-side of both functionalities (basically involving credagent and creduiagent
modules) were previously implemented in the Foundation Layer, but they also re-
quire special support in server side beyond PAM integration in CDAProxy.

PAM support is a very powerful feature, but it is also complex to configure and
requires a software infrastructure that is not available in all platforms, specially in
mobile devices. Usually the CDAProxy runs in a PC and not in mobile devices,
but some scenarios are possible where the CDAProxy could run in a mobile device;
for example as a personal, mobile and secure store of credentials or as a method
to implement parental control: a child mobile phone needs to obtain a credential
from the CDAProxy, that is running in the mobile device of his parent, and the
CDAProxy request confirmation.

To make optional the PAM support in the CDAProxy, and also to achieve a
higher portability, a new plug-in architecture has been implemented. PAM support
is provided by a plug-in with a very simplified API hiding the PAM complexity.
The PAM support may be enabled or disabled in a per account basis.

5.2 General architecture

The logic of the new plug-in starts just after reading the user and password from
the corresponding request. The plug-in authenticates the user and three scenarios

20

IST-033576 D3.6.6

are possible in case of success:

1. The plug-in just authenticates the user: in that case, the CDAProxy logic
continues, evaluating the configuration (e.g. checking a local file credential
or connecting to CDA server).

2. The plug-in maps to a new password: this is the case when the CDAProxy
uses PAM to authenticate users against their enterprise’s SSO (e.g. a LDAP
server) and then uses a secret password to authenticate against the CDA
server. In this situation, the CDAProxy logic continues evaluating the con-
figuration, but using the password returned by the plug-in instead of the pass-
word provided by the user.

3. The plug-in gets the credential by itself, doing all the rest of the work

5.2.1 Architecture of PAM plug-in

The plug-in uses internally a PAM implementation, but hiding its internal details
and just exposing a public API that will be later detailed in section 5.3.It’s interest-
ing anyway to quickly review the PAM principles.

PAM architecture provides an API for applications, a configuration file for ad-
ministrators and an API for module programmers. When an application invokes
the PAM API it passes an application name that is used to select the modules to run
according a configuration file with pattern
/etc/pam.d/<application_name>.

There are three types of PAM modules:

1. Authentication modules: modules required to verify the identity of the user
(for example, by asking username and password)

2. Authorization modules (account modules in PAM terminology): modules
that, once verified the users’ identity, determine if user access should be
granted.

3. Session modules: modules which can execute arbitrary code when logging
in/out. In the CDAProxy plug-in architecture, these modules could retrieve
the final credential from the CDAServer or return a password to be used to
connect to the CDAServer (nothing would be done if PAM configuration is
only used for authentication and authorization purposes).

Actually, there is also a fourth module type: password modules, which are used
to modify the user’s security token. This type is not considered as it’s used only
by special tools to modify the password (like the passwd command) and is not
intended to usual applications.

The CDAProxy does not need to know anything about modules and PAM com-
plexity, and therefore the plug-in exports a simplified API with only one function.

XtreemOS–Integrated Project 21

IST-033576 D3.6.6

This function invokes the PAM API to authenticate and authorize, returning, de-
pending on the type of session module, the CDA credential, the CDA password or
an authorization to use a local credential.

Note that PAM authentication modules may support authentication methods
involving an interaction with the user different than the usual request for username
and password. Interaction with users occurs really in client-side: this implies that,
in order to support new methods of interaction, some modifications are required in
credagent and creduiagent modules. This is for example the case with Bluetooth
pairing and PIN based authentication.

5.2.2 Architecture of PIN based authentication

A possible security flaw of PIN based authentication, when using an enterprise
proxy instead of a personal proxy, is that storing passwords is necessary, to send
them to the authentication server once PIN-authenticated against the proxy. To
minimize this security risks, maximum isolation between the proxy and the soft-
ware that checks the PIN and returns the password or locks the password after three
faults, is required. PAM modules runs in the same memory address space than the
invoking application. Therefore, as a security enhancement instead of implement-
ing PIN authentication in the PAM module, the module only does a fork & exec to
run the real code, a utility named pin_authentication.

5.3 API definition

The plug-in API is very simple:

int cdaproxy_plugin(char *appname,char *user,
char *security_token,
char **cda_user,
char **cda_password,
char **credential);

The function returns 0 on success, otherwise a negative error code:

• -1: Authentication error

• -2: Authorization error

• -3: Internal/misconfiguration error

• Appname parameter is used by libpam to choose the configuration file (and
therefore the modules to apply) as was explained before.

• User parameter must contain the username to authenticate and authorize.

XtreemOS–Integrated Project 22

IST-033576 D3.6.6

• Security_token parameter must be filled with the secret used to authenticate
the user. It may be for example a password or a PIN. Parameter may be
NULL if authentication is external (e.g. Bluetooth pairing authentication).

• Cda_user parameter is a pointer to a string that may be filled with the user-
name to use for CDA authentication. If it is not filled with NULL, is respon-
sibility of the caller to free the pointer.

• Cda_password parameter is a pointer to a string that may be filled with the
password to use for CDA authentication. If it is not filled with NULL, is
responsability of the caller to free the pointer.

• Credential parameter is a pointer to a string that may be filled with the cre-
dential to return to the remote client. If it is not filled with NULL, is respon-
sability of the caller to free the pointer.

If there is not a special session module, parameters cda_user, cda_password
and credential are filled with NULL: in this case PAM modules only authenticate
and authorize users and the CDAProxy must know how to obtain the credential. A
second possibility is that the session module fills the cda_user andcda_password
parameters with values and the credential with NULL: in this case the CDAProxy
must contact the CDA to obtain the credential. Finally, a session module may fill
the credential with the XOSCert while the cda_user and cda_password will be
NULL.

5.4 Implementation

The CDAProxy was updated to support plug-ins. The CDAProxy uses dlopen and
loads modules from /usr/lib/xos/. The CDAProxy uses a hash table to avoid
dlopen’ing multiple times.

PAM Plug-in is implemented in file cdaproxy_plugin_pam.c. The code
invokes the different PAM API functions and is aware of username changes.

A set of PAM modules and a utility named pin_authentication have been writ-
ten to implement the server-side of PIN authentication.

5.5 Installation and usage

A new project cdaproxy_pam with the source code of the plug-in was created.
This project only requires libpam to build. The software is packaged for the sup-
ported platforms, and installing cdaproxy_pam package is sufficient to install also
cdaproxy.

To enable PAM support to authenticate all users, edit /etc/xos/cdaproxy.conf
and set use_plugin=true and plugin_name=PAM in all_users_default sec-
tion. To enable/disable PAM support in a user-by-user basis, insert use_plugin pa-

XtreemOS–Integrated Project 23

IST-033576 D3.6.6

rameter inside the specific user section. If plugin_config key is present, it is used
as appname paremeter of cdaproxy_plugin method, otherwise cdaproxy is used.

XtreemOS–Integrated Project 24

Chapter 6

Resource sharing

6.1 File sharing

6.1.1 Introduction

File sharing between mobile devices and the Grid demands new capabilities to the
XtreemFS. The OSDProxy is a new element integrated within the XtreemFS that
provides those new capabilities. In this section, we cover the general architecture
and implementation of the different elements that shape the file sharing system, as
well as its installation and configuration.

6.1.2 General architecture

The OSDProxy is another OSD in the XtreemFS distributed file system, but with
the particularity of making the mobile device data accessible for the Grid, thanks
to the integration of three new software modules.

• Mobile communications

• Shared files database

• Shared volumes manager

6.1.2.1 Mobile communications

The mobile communications software module offer an API to exchange sharing
requests between mobile devices and the OSDProxy. The mobile device can exe-
cute commands for sharing files and manage them, and the OSDProxy requests the
shared files data to mobile devices.

6.1.2.2 Shared files database

The shared files database software module is a local database using BabuDB that
contains all the references about the files shared by any mobile device.

25

IST-033576 D3.6.6

6.1.2.3 Shared volumes manager

The shared volumes manager software module is in charge of discovering the
user’s volume in the Grid and also managing the shared files as files stored in
the XtreemFS.

6.1.3 API definition

The API offered by the mobile communications module is bidirectional, offering to
mobiles devices a series of “sharing requests” and offering to the OSDProxy itself
the “data requests” that are sent to the mobile device.

6.1.3.1 Sharing requests

The OSDProxy is always ready to accept connections in the configured port for
sharing requests. The mobile device can ask for a new connection sending a cookie
with its UUID. When the cookie is correct, the OSDProxy establish a new socket
with the mobile device, being ready for processing the possible sharing requests
(commands) from mobile device.

Those requests are Big-Endian binary streams starting with a command code
followed by the parameters required in each case. The command code is always
the first byte of the request and it can contains five different values identifying
the different commands supported: share file, remove shared file, make directory,
remove directory and move.

1. Share file command This is the main command of this API, allowing mo-
bile devices to share files in the Grid. These files cannot be modified while
they remain as shared files. The code for the share command is “0” and the
structure of the stream includes three parameters, the shared file reference
at first time, followed by the shared file size in bytes, and a timestamp. The
shared file reference is composed by two fields. Two bytes to code the shared
file name length in bytes and a byte array with the file path. The file path
is always referred to the local shared folder in the mobile device what rep-
resents the user volume in the grid. The shared file size (in bytes) field is
coded with four bytes. The timestamp is referred to the mobile device local
date and is coded with eight bytes.

Figure 6.1: Share file command

XtreemOS–Integrated Project 26

IST-033576 D3.6.6

2. Remove file command The remove command is only allowed for the mobile
devices that have ever shared files in the grid, and it makes possible the
removal of those files from the grid. The code for the remove command is
“1” and it’s followed by just one parameter, which is the shared file reference
coded as the previous command.

Figure 6.2: Remove file command

3. Make directory command This command makes possible to organize the
shared files in different folders within the mobile device shared folder and, at
the same time, in the Grid user’s volume). The code for this command is “2”
and it’s followed by two parameters. The first one is the folder reference that
is composed by two fields, representing the file share reference: two bytes
encoding the folder name length followed by a byte array with the folder path
referred to the local shared folder. The last parameter is a timestamp that is
referred to the mobile device local date and that is coded in eight bytes.

Figure 6.3: Make directory command

4. Remove directory command This command is used to remove folders and
their content. The code for this command is “3” and it’s followed by the
same parameters than the “Make directory” command.

5. Move command This command allows users to rearrange their shared files
in the different folders, and also their content. The code for this command
is “4” and it’s followed by three parameters: the source, the target and a
timestamp. The source and the target may be a reference to a shared file
reference or to any folder. The timestamp is referred to the mobile device
local date and is coded in eight bytes.

XtreemOS–Integrated Project 27

IST-033576 D3.6.6

Figure 6.4: Remove directory command

Figure 6.5: Move command

6.1.3.2 Data requests

When the OSDProxy needs the shared files data, it asks for a new connection to
the file owner (the mobile device) sending a cookie with the mobile device UUID
for authentication. If the cookie is correct, a new socket is established and then the
OSDProxy sends a Big-Endian binary stream to the mobile device, containing the
following fields:

1. Offset. Four bytes coding the position within the file where the required data
block starts

2. Length. Four bytes coding the size of the required data block in bytes

3. Shared file reference. Two bytes to code the shared file name length in bytes
and a byte array with the file path. The file path is referred to the local shared
folder in the mobile device

When the mobile device receives a data request, it looks for the file and reads
the requested data. The mobile device replies sending the data in a binary stream,
starting with a “0” code or a value different than zero in case of a read error. Only
when the code is zero the OSDProxy reads the file data from the stream.

6.1.4 Implementation

The OSDProxy is a Java6 program, like the standard OSDs, which provides its own
library, OSDProxy.jar. This new program keeps the same dependencies than
the original OSD and includes two new dependencies:

XtreemOS–Integrated Project 28

IST-033576 D3.6.6

Figure 6.6: Data request

• BabuDB. As the MRC and DIR, the OSDProxy needs a local database and
uses the same release than them.

• BerkeleyDB. The OSDProxy uses the java interface of BerkeleyDB release
4.8.24 to query about mobile devices cookies and ports before requesting the
shared files data.

6.1.4.1 Mobile communications

A server socket provided by Java6 JDK, opened in the configured port of localhost,
is the resource used to accept the sharing requests. It is always open since the
process start, and it accepts new connections from mobile devices, starting a new
thread for each one, which will be in charge of processing every request received
over it. When the process receives data requests for shared files, and if the shared
file has not been uploaded yet, it requests a new connection using a standard socket
opened in the port registered by the mobile device cookie. If the mobile device
accepts the connection and sends data, the process writes the data in the configured
disk space. Then, it passes the control to the OSD standard procedure. If the mobile
device does not accept the connection or a transfer error occurs, an IOExcepcion is
thrown to the OSD standard procedure.

6.1.4.2 Shared files database

The OSDProxy implements a local database, using BabuDB, to store the shared
files references and the folders used to organize them. This information is indexed
using a record where the key is the fileID provided by XtreemFS, containing the
following fields:

XtreemOS–Integrated Project 29

IST-033576 D3.6.6

Figure 6.7: New connection for sharing requests

• Type Three different items can be indexed. A shared file, a folder or a home.
The home represents one mobile device and in this case the key is provided
by the cookie and contains the mobile device UUID.

• Name Contains a folder name or shared file name. It’s empty when the type
is home.

• ParentKey Contains the key of the home or folder which group it.

6.1.4.3 Shared volumes manager

The manager is an object that implements the sharing commands by using the MRC
API and a user’s volume discovering procedure. Using the DIR API xtreemfs_service_get_by_name
method, provided by the OSDRequestDispacher, the user’s volume discovering
procedure looks for the MRC which manage those volumes.

Striping Policy The process uses the same striping policy for every volume

• Type. STRIPING_POLICY_RAID0

• Width. 1, because only the OSDProxy can store shared files

• Size. The same size configured in the volume if it is less or equal to the
striping policy size configured in OSDProxy properties

XtreemOS–Integrated Project 30

IST-033576 D3.6.6

The reason why the OSDProxy fixes its own striping policy is to take control
over the OSD which stores the shared file objects, and to restrict the size of the
objects in order to speed up the data requests between the mobile device and the
process.

Sharing commands The OSDProxy uses the MRC API methods in order to
execute the different commands over users’ volumes in the Grid. The share file
command shown in figure 6.8 is the main one (and the more complex).

Figure 6.8: Share file command

6.1.5 Installation and configuration

The installation of OSDProxy is resolved by a rpm package which contains the
software, configuration file and start/stop script. The administrator needs to install
the package to deploy the OSDProxy in the same locations than the other XtreemFS
components.

6.1.5.1 Configuration

The data sharing feature can be easily configured through the specific graphical
configuration tool provided, explained in section 6.3. The OSDProxy properties

XtreemOS–Integrated Project 31

IST-033576 D3.6.6

file is osdProxyconfig.properties, including some modifications to the original OSD
properties file:

Sharing requests properties

• ds.request_port Defines the local port where the OSDProxy listen for new
connections from mobile devices

• ds.volume_prefix Defines the prefix used to compound the name of the users
volumes in the grid

• ds.stripe_size Defines the maximum striping size applied by the OSDPoxy
in shared files

• ds.max_timeout Defines the maximum waiting time for data requests in mil-
liseconds

• ds.max_attempts Defines the maximum number of attempts for data requests
when waiting time expires

BerkeleyDB configuration

• xosPort.db_home Defines the absolute path where is placed the xos_register_port
database

• xosPort.db_file Defines the file name of the xos_register_port database

• xosPort.db_name Defines the name of the xos_register_port database

BabuDB configuration It uses the same properties than the MRC and DIR.

XtreemOS–Integrated Project 32

IST-033576 D3.6.6

6.2 I/O device sharing

6.2.1 Introduction

XtreemOS-MD offers the possibility to share I/O devices and network connectivity
with other XtreemOS users [4]. In this section we cover the general architecture
and the implementation of the different elements that shape the resource sharing
system for connectivity and I/O devices, including as well an example of use and a
complete explanation about its installation and configuration.

6.2.2 General architecture

Given the different particularities of the input/output devices in mobile devices, the
architecture of the system has been divided in three different subsystems:

• Publishing Subsystem

• 3G Connectivity Sharing Subsystem

• GPS Sharing Subsystem

6.2.2.1 Publishing Subsystem

This subsystem is in charge of collecting information from the mobile devices,
sending it to the SRDS system through AEM. This subsystem is composed of a
client part and a server part.

The client part is based on the I/O sharing module, which invokes the
XOS-MD contextAwareness API [6] to get information about the GPS position,
accurate date, connectivity situation and sharing resources availability (resources
information). The data is formatted as an XML document following the schema
detailed in section 6.2.3, which is then sent to SRDS using the XATICA standard
function (pushMDinfo). Mobile devices update the info stored by SRDS each
ten minutes.

The sever part of this Publishing subsystem consist basically of a wrapper
for the XATICA SRDS API, in order to send information from mobile devices
to SRDS in a transparent way.

The figure 6.9 shows the general architecture of the Publishing subsystem im-
plemented in XtreemOS-MD

6.2.2.2 3G Connectivity Sharing Subsystem

The main goal of the Connectivity Sharing Subsystem is to facilitate the sharing
connectivity to other XtreemOS users (connected from either mobile devices or
PC’s). Most of the recent smartphones offer 3G connectivity to Internet, which is
consider as one of the resources to share in the XtreemOS Grid. This subsystem

XtreemOS–Integrated Project 33

IST-033576 D3.6.6

Figure 6.9: System for publishing information on SRDS

permits XtreemOS users to enjoy web traffic from devices without direct connec-
tivity to the Web.

The OpenVPN networking platform [1] is used to share the 3G connectivity.
OpenVPN works as a server in the mobile devices, controlling the number of con-
nections, handling certificates and forwarding the web traffic. The OpenVPN,
available for Maemo 4.2 (Diablo)[2] and Maemo 5 (Fremantle)[2], is controlled
by the I/O sharing module. It manages the 3G connectivity resource in the MD,
determining when the connectivity is shared and publishing its availability on the
SRDS system.

To access to a “3G” shared resource, its necessary to be signed and authenti-
cated inside a XtreemOS VO (XtreemOS certificates are used to control the access
to the 3G resources) and to request a resource with 3G connectivity to the Grid.
AEM (Resource manager) consults the SRDS system and returns the selected mo-
bile device to share its connectivity. The information supplied by the SRDS (via
AEM) to the user is the IP address and port where the OpenVPN running on the
mobile is listening to “connectivity requests”. It’s necessary as well to have a open-
VPN client installed, which will be used to send the corresponding “connectivity
request” to the mobile device acting as 3G provider. When the OpenVPN accepts
the sharing request, a connection between the 3G provider and the claimant client
is established for the web traffic.

XtreemOS–Integrated Project 34

IST-033576 D3.6.6

The routing tables of the mobile device acting as provider are modified, and
NAT forwarding is activated to manage the new connections and to allow the web
traffic in a transparent way for the client.

6.2.2.3 GPS Sharing Subsystem

Currently, a lot of mobile devices are provided of a GPS device, which can be then
considered as a resource to share in the Grid, in the XtreemOS context, allowing
XtreemOS users to get accurate dates, GPS coordinates and to track paths of mobile
devices.

This information is provided to the XtreemOS users as a standard metric avail-
able in the monitoring system of the AEM. Consequently the GPS resource is
shown to the interested users or services completely integrated with the XtreemOS
Monitoring system. On the other hand, mobile devices send periodically informa-
tion about their position, date and followed paths using the XATICA API.

A service (user) that wants to know the GPS position of a mobile device or to
track the path followed must send a job to the Grid with a reservation for a mobile
node, requesting the desired metrics related to GPS using the standard procedure.
The requested metrics are returned to the service together with other standard met-
rics (for example, in order to save them in the XtreemFS user’s volume).

The figure 6.10 shows the GPS sharing subsystem inside XtreemOS-MD, based
on events and metrics of the Monitoring system.

6.2.3 API definition

6.2.3.1 Publishing Subsystem API

The section presents a detailed description of the Publishing Subsystem API, which
is invoked to communicate the mobile device with the SRDS system. Table 6.1
summarizes the different operations, parameters, results and status codes returned:

Name Parameters Result
pushMDinfo (String) info none

retrieveMDinfo (String) query (String) nodeInformation

Table 6.1: Publishing SubSystem API operations

6.2.3.2 pushMDinfo

Permits Mobile devices to push the resource information on the SRDS system.

Parameters

info: a string in XML format 6.11 with the resource information of the mobile
device.

XtreemOS–Integrated Project 35

IST-033576 D3.6.6

Figure 6.10: Schema of GPS information as metric values

Result

None

6.2.3.3 retrieveMDinfo

This method returns the selected Mobile device fulfilling the premises of the pa-
rameter query.

Parameters

query: a string in XML format 6.13 with the premises to select a concrete
mobile device.

Result

result: a string with the contact information of the selected mobile device.

6.2.3.4 GPS Sharing Subsystem API

Table 6.2 summarizes the different operations, parameters, results and status codes
returned by the GPS Sharing Subsystem API.

XtreemOS–Integrated Project 36

IST-033576 D3.6.6

Name Parameters Result
pushGPSInfo (String) info none

Table 6.2: GPS sharing SubSystem API operations

6.2.3.5 pushGPSinfo

Permits Mobile devices to send the resource information related to GPS to the
AEM.

Parameters

info: a string in XML format 6.2.3.6 with the resource information of the mo-
bile device.

Result

None

6.2.3.6 info data format

The schema of the XML document for publish messages of resources on the SRDS
system is presented in the figure 6.11

An example of a possible publish message is presented in the figure 6.12

6.2.3.7 query data format

The schema of the XML document for queries resources on the SRDS system is
presented in the figure 6.13

An example of a query message is presented in the figure 6.14

6.2.4 Implementation

6.2.4.1 Publishing parameters Implementation

The I/O sharing module is a program written in C language that starts when the
mobile device is switched on. It is in charge of collecting the resource information
through the context awareness API, formatting it in XML format following the
schema shown in section 6.2.3.6 and sending it as a a XML string to the SRDS
using the XATICA method pushMDInfo. The procces is repeated each 10 minutes
in order to keep updated information on the SRDS system. Each publish message
contains a timestamp to inform when the information was collected. Note that the
SRDS system considers obsoleted the information published more than 30 minutes
ago, that is the reason to resend the mobile resources infromation from time to
time, even if the data have not changed.

Given that the module uses the ContextAwareness API, the program is linked
with the dynamic library libCONTEXT installed with the XtreemOS-MD distri-
bution.

XtreemOS–Integrated Project 37

IST-033576 D3.6.6

Figure 6.11: Schema for publish message in XML format

XtreemOS–Integrated Project 38

IST-033576 D3.6.6

Figure 6.12: Example of publish messages

6.2.4.2 3G Connectivity Sharing Implementation

The 3G connectivity sharing is based on:

• OpenVPN software, to create manage and terminate communications (VPN)
between the resource mobile device (as server) and the possible clients (other
mobile devices or PC’s). In addition, the module is in charge of modifying
the routing tables to enable the forwarding of the web traffic through the
mobile device that works as a connectivity provider.

• the I/O sharing module that controls the OpenVPN starting/stopping and cur-
rent status, as well as the number of open connections and possible incidents
related to the VPN.

The I/O sharing module contains the functions start_sharing(), stop_sharing(),
monitor_sharing() that perform the operations mentioned above. The maximum
number of sharing connections supported is defined by the user in the configura-
tion files and it is controlled by the module.

Some modules have also been added to the kernel, taking into account that
some of the smartphones compatible with XtreemOS do not support NAT forward-
ing:

• ipt_MASQUERADE.ko

• ipt_NETMAP.ko

• iptable_nat.ko

• nf_conntrack.ko

• nf_conntrack_ipv4.ko

XtreemOS–Integrated Project 39

IST-033576 D3.6.6

Figure 6.13: Schema for queries in XML format

XtreemOS–Integrated Project 40

IST-033576 D3.6.6

Figure 6.14: Example of queries

• nf_nat.ko

Furthermore, the IPTABLES command included in Maemo and Openmoko
plantfomrs does not support NAT forwarding so this command has been recompiled
for ARM architecture and included in the new XtreemOS-MD distribution.

The figure 6.15 shows the sequence of messages taking part in the 3G sharing
process. First the I/O sharing module publishes the resource information
through the pushMDInfo() method and the instance of AEM forwards the mes-
sage to the SRDS system.

When a XtreemOS client needs a 3G connection, a reservation for a resource
with 3G is sent to the SRDS, returning back the contact information (IP address
and port) of a resource fulfilling the client requirements. This information is used
to invoke the OpenVPN running on the Mobile resource. Once the client contacts
with the Mobile resource, the control of the operation is transferred to the Open-
VPN software.

6.2.4.3 GPS Sharing Implementation

Following the general premises of the implementations for Mobile devices, GPS
sharing mechanisms tries to avoid opening ports in the mobile device for security
reasons. Due to the fact that an open port is necessary to listen to GPS requests from
clients and to return the requested information, a solution has been implemented to
avoid the possible security problems of opening ports. To this purpose, a plug-in
has been included in the AEM system as a new AEM service. This AEM plug-in is
in charge of receiving and storing periodic updates of GPS positions from mobile
devices through pushGPSInfo(), as well as receiving requests from AEM to

XtreemOS–Integrated Project 41

IST-033576 D3.6.6

Figure 6.15: 3G Sharing Schema

get the GPS information as a metric for its monitoring tasks. When the plug-in
receives this kind of requests, it collects and sends the information invoking the
addMetric and setMetricValue methods of the AEM API.

The complete sequence of message is shown in the figure 6.16
This solution fulfills the security premises for MDs but modifies the guidelines

of sharing mobile device resources: the implemented GPS sharing mechanism is
a passive process (the MD is updating the information without any client request)
instead of offering the GPS information on demand (in an asynchronous way).
However, the selected solution allows the integration of GPS information as a met-
ric into the resources metrics set available in the Monitoring System of the AEM,
which will be offered like other classical resources (RAM, CPU, disk, etc.)

The implementation of the GPS Sharing Subsystem can be divided in two com-
ponents:

• Server (Plugin AEM)

• Client

Server side: Plugin AEM The AEM process includes a new plug-in for re-
ceiving the GPS location from mobile devices and storing and offering it to any
job in the GRID. The plug-in exports the API for mobile devices: shareGPS,
updateGPSPosition and unshareGPS. For each mobile device, and while
sharing its GPS, the plug-in stores the location and offers an API to access that loca-
tion data to any job in the GRID through the AEM, using the methods: subscribeToGPS
and unsubscribeToGPS.

XtreemOS–Integrated Project 42

IST-033576 D3.6.6

Figure 6.16: GPS Sharing Schema

Client side The client part of GPS sharing is integrated into the I/O sharing
module. The main goal of the client part is to update the GPS information (in
format 6.2.3.6) to the plug-in AEM using the method pushGPSInfo() . This
process is similar to the other functions of the I/O sharing module.

6.2.5 Installation and usage

6.2.5.1 Installation

Client side The implementation of the I/O sharing module is created and deliv-
ered in the form of an executable which is offered with the XtreemOS-MD version
as a deb package for Maemo, although it is possible to install the module manu-
ally, executing the following commands:

• Maemo devices:

#dpkg -i moduleSharingIO-1.0.deb

This command installs and configures the module in the system.

Server side MDEventProxy is an AEM service and as such is packaged along
with the rest of services in the third release.

6.2.5.2 usage

Client side The I/O sharing module works in a transparent way for the user, but
the configurations and options can be modified from the configuration tool, which
is detailed in section 6.3.

XtreemOS–Integrated Project 43

IST-033576 D3.6.6

Figure 6.17: Resource sharing configuration tool

Server side In order to use the MDEventProxy, there must be at least one in-
stance of it running in the Virtual Organization. To enable it just check that the
following file exists in the appropriate node and has the enabled property set to
true.

/etc/xos/config/xosd_stages/MDEventProxy.stage

6.3 Resource sharing configuration tool

6.3.1 Introduction

As mobile device users are not necessarily “computer-experts”, the modification
of a textual configuration file could be supposed as a not so trivial task. Graphical
tools are much more usable for those kind of devices, so that, the resource sharing
package includes a tool that is installed and accessible from the device’s application
menu, in order to facilitate the possible configuration modifications of the resource
sharing features.

6.3.2 Configurable parameters

The resource sharing configuration tools allows a quick configuration of the main
parameters of the resource sharing daemon and the different sharing modules (data,
I/O and network). The graphical interface, as shown in figure 6.17, is composed of
different tabs:

XtreemOS–Integrated Project 44

IST-033576 D3.6.6

Default Includes the “Turn on Resource Sharing” check button, which allows
enabling/disabling the whole resource sharing feature (when enabled, just the dif-
ferent enabled sharing modules will be active anyway) and the general parameters
that are considered if the different sharing modules don’t specify a different policy
overriding the default one. The following list of parameters is available as well
from the other sharing module tabs, just by clicking on the correspondent “Show
specific parameters” button.

• Request explicit approval: to force the user’s approval of any request to ac-
cess to the shared resources

• Notify new sharing requests: to show a notification on the device screen
when the shared resource is being accessed

• Disable resource when not using Wifi: to allow disabling the resource shar-
ing feature when not connected via Wifi (as the user could be connected with
a non-free access...)

• Disable resource when battery below (%): to disable the resource sharing
feature in order to save battery

Data sharing

• Enable Data Sharing: to enable/disable the data sharing module

• Shared folder: to specify the local folder containing the files that will be
shared to the rest of Grid users.

• Data sharing proxy IP: IP of the proxy module used to facilitate the data
sharing with the rest of the Grid

• Data sharing proxy port: port where the mentioned proxy is listening

GPS sharing This is a particularization of the I/O device sharing, as for the mo-
ment the GPS is the only device considered (other possibilities could be the on-
board camera, micro, etc.)

• Enable GPS Sharing: to enable/disable the GPS sharing module

• GPS sharing proxy IP: IP of the proxy module used to facilitate the GPS
sharing with the rest of the Grid

• GPS sharing proxy port: port where the mentioned proxy is listening

XtreemOS–Integrated Project 45

IST-033576 D3.6.6

Network sharing

• Enable Network Sharing: to enable/disable the network sharing module

• Max. number of simultaneous connections: to limit the number of users that
can be accessing the shared network interfaces simultaneously

• Network sharing proxy IP: IP of the proxy module used to facilitate the net-
work sharing with the rest of the Grid

• Network sharing proxy port: port where the mentioned proxy is listening

XtreemOS–Integrated Project 46

Chapter 7

Conclusions

In this document we have reviewed the implementation of the advanced version of
XtreemOS-MD G-layer. The main new features, compared to the basic version,
covered by this implementation are:

• Support for smartphones bsaed on Maemo 5, like the Nokia N900, keeping
the previous support for PDAs based on Maemo 4, like the Nokia N8x0
family

• Data management features: using Vivaldi to select replicas in XtreemFS and
providing an OSDProxy to permit the data sharing feature without compro-
mising the XtreemFS security model.

• AEM improvements related to call-back monitoring (server part removed,
the notifications are no more based on asynchronous events) and related as
well to the publication in the SRDS of the MD resources shared

• Security improvements related to the PAM support, allowing the integra-
tion with legacy SSOs as well as opening the range for new authentication
mechamisms.

• Resource sharing capabilities allowing the mobile device to share data on
demand (acting like a fake OSD), and to share the access to the I/O devices
and network access provided by the mobile terminal.

It is especially relevant the addition of resource sharing capabilities to XtreemOS-
MD, as it makes possible the inclusion of mobile devices as special resource nodes
of the Grid, not being the MDs limited to pure Grid clients, as they were with the
XtreemOS-MD basic version. As the mobile device is not a conventional resource
node of the Grid (taking into account the XtreemOS security model), it cannot be
considered a trusted node and that is the reason to include a special “trusted proxy”
in the Grid, which is in charge of the direct communication with the mobile devices
sharing resources.

47

IST-033576 D3.6.6

This new XtreemOS-G advanced version is currently being tested and inte-
grated with the existing XtreemOS components. Together with the F-layer it will
be packaged, in cooperation with WP4.1, for PDAs (Nokia N8x0, like the basic
version) and also for smartphones (like Nokia N900). It will be ported to Ubuntu
(for netbooks) and additionally, 3rd parties could port it to other Linux-based mo-
bile device platforms (MobLin, LiMo, Android, etc.)

As a final conclusion for the work done in WP3.6, we should remark the evo-
lution experimented from the basic version to the final advanced version imple-
mented, supporting not only the last version of Security, AEM and XtreemFS
XtreemOS services, but also converting the mobile device in a special resource
node thanks to the inclusion of the resource sharing feature. Those implemen-
tations open the door for the development of new applications in the domain of
mobile devices, extending enormously their capabilities with the potential offered
by the Grid.

XtreemOS–Integrated Project 48

References

[1] OpenVPN - Open Source VPN.
http://openvpn.net/.

[2] OpenVPN for Maemo5.
http://maemo.org/downloads/product/Maemo5/openvpn/.

[3] XtreemOS Consortium. XtreemOS-G for MDs/PDA D3.6.3. Integrated
Project, December 2008.

[4] XtreemOS Consortium. Design of advanced services for mobile devices
D3.6.5. Integrated Project, December 2009.

[5] XtreemOS Consortium. Design of an advanced Linux version for mobile de-
vices, D2.3.6. Integrated Project, October 2009.

[6] XtreemOS Consortium. Linux-XOS for MD/MP, D2.3.7. Integrated Project,
December 2009.

[7] XtreemOS Consortium. Requirements and specification of advanced services
for mobile devices D3.6.4. Integrated Project, May 2009.

[8] XtreemOS Consortium. Advanced AEM prototype D3.3.7. Integrated Project,
March 2010.

49

http://openvpn.net/
http://maemo.org/downloads/product/Maemo5/openvpn/

	Glossary
	Introduction
	Document structure

	Overview of the advanced services implementation for MDs
	Design review
	AEM service
	Data management service
	VO management and security
	Resource Sharing

	Final architecture

	AEM service
	Introduction
	General architecture
	API definition
	Implementation
	Installation and usage

	Data management service
	Introduction
	General architecture
	API definition
	Implementation
	Installation and usage
	Vivaldi feature
	Vivaldi in the OSDs
	Gathering the coordinates
	Vivaldi in the clients

	VO management and security
	Introduction
	General architecture
	Architecture of PAM plug-in
	Architecture of PIN based authentication

	API definition
	Implementation
	Installation and usage

	Resource sharing
	File sharing
	Introduction
	General architecture
	API definition
	Implementation
	Installation and configuration

	I/O device sharing
	Introduction
	General architecture
	API definition
	Implementation
	Installation and usage

	Resource sharing configuration tool
	Introduction
	Configurable parameters

	Conclusions
	References

