
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Linux-XOS for MDs/PDA
D2.3.4

Due date of deliverable: May 31st, 2008
Actual submission date: May 30th, 2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP2.3
Task number: T2.3.4

Responsible institution: Telefónica I+D
Editor & and editor’s address: Luis Pablo Prieto

Telefónica I+D
Parque Tecnológico de Boecillo

47151 Boecillo (Valladolid)
SPAIN

Version 1.01 / Last edited by Luis Pablo Prieto / May 28rd, 2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 1/4/08 Luis Pablo Prieto TID Initial template
0.2 3/4/08 Luis Pablo Prieto, Daniel

Galindo, Manuel Martín
TID Detailed outline

0.3 22/4/08 TID Team TID First draft of VO support chapter
0.4 24/4/08 TID Team TID First draft of Mobility chapter
0.5 24/4/08 Luis Pablo Prieto TID Introduction and roadmap
0.6 25/4/08 Luis Pablo Prieto TID Proofreading and re-structuration
0.7 28/4/08 Luis Pablo Prieto TID Final proofreading and formatting
0.8 22/5/08 TID Team TID Incorporated reviewer’s comments
1.0 26/5/08 Luis Pablo Prieto TID Finishing touches

1.01 28/5/08 Luis Pablo Prieto TID Minor formatting issues

Reviewers:
Haiyan Yu (ICT), Antoine Giniès (EDGE)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T2.3.4 Implementation of a basic Linux version for mobile devices TID∗, INRIA

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary

Mobile access to grid services is a research field that has not yet been fully
solved, specially when it comes to the real implementation of such access. This
has been mainly due to the heaviness of most grid service clients and middleware,
which is not adequate for the restricted execution environment of mobile devices.

The XtreemOS project proposes to integrate several common grid functional-
ities into the operating system, to achieve better efficiency, scalability and trans-
parency when operating inside virtual organizations, which would be used through
similar methods as a usual operating system. This enhanced operating system will
be developed for a number of platforms, including not only PCs but also clusters
of computers and mobile devices, such as PDAs (XtreemOS-MD).

Towards this goal, the Linux operating system has been modified and extended
with a number of software modules and services, which are broadly organized in
two layers: a lower-level foundation layer (XtreemOS-F), which extends the oper-
ating system with grid entities so that virtual organization policies can be enforced,
and a grid services layer (XtreemOS-G) which provides the grid services them-
selves, like execution or data management.

Xtreemos-MD, as the mobile device flavour of XtreemOS, will allow for mo-
bile access to the XtreemOS grid services from Linux PDAs thanks to its founda-
tion layer which provide virtual organization (VO) support. The first version of
XtreemOS-MD has been constructed around the Ångström Linux distribution, al-
though great emphasis has been made on the portability of the modules to other
distributions. In fact, all the developed software can also be run over the Maemo
distribution for Nokia Internet Tablets.

This document contains the installation, configuration and usage documenta-
tion of the foundation layer of XtreemOS-MD. This layer, apart from the afore-
mentioned VO support in the Linux operating system, also provides terminal mo-
bility features (e.g. the ability to change access networks without interrupting the
connectivity) through a USAGI MIPv6 implementation for PDAs.

The software is organized into two packages, which can be installed indepen-
dently, to accomodate the needs of different kinds of users:

The xosmd-vosupport package provides a flexible way for Linux to oper-
ate inside an XtreemOS virtual organization. Depending on the needs of the user
and/or the Linux distribution upon which it will be integrated, several modes of op-
eration are supported. The package includes a number of utilities in order to ease
and automate the acquisition and management of credentials for grid access by user
applications, as well as several mechanisms for safely storing these credentials to
get single sign-on features in XtreemOS grids. Depending on the features of the
mobile Linux distribution underneath, these utilities may depend on the mecha-
nisms (namely, PAM and NSS) developed for the PC flavour of XtreemOS (e.g. if
we want to isolate local processes from grid-related processes).

IST-033576 D2.3.4

The xosmd-mobility package provides the terminal mobility features, and
it is mainly composed of kernel-space software (which is already part of the main-
line Linux kernel), plus a user-space daemon and a number of user tools.

Together, these two software packages provide the necessary low-level capabil-
ities to seamlessly access XtreemOS grid services from a mobile Linux operating
system, while moving from one access network to another, and to authenticate
users against a virtual organization.

XtreemOS–Integrated Project ii

Contents

Glossary 4

1 Introduction 6
1.1 XtreemOS-MD usage scenario 7
1.2 XtreemOS-MD architecture . 8
1.3 F-Layer modules . 9
1.4 Document structure . 10

2 VO Support in Linux-MD 11
2.1 Main features . 11
2.2 Software description . 12

2.2.1 Typical usage scenarios 13
2.2.2 libcredstore and libxos_getcred 13
2.2.3 New client software: startxtreemos* 17
2.2.4 Mechanisms for legacy applications: libxos_wrapopen 18

2.3 System Requirements . 19
2.3.1 Hardware . 19
2.3.2 Software . 19

2.4 Installation manual . 20
2.4.1 Building and installing libcredstore 20
2.4.2 Building and installing libcredstore, libxos_getcred

and startxtreemos-m 21
2.4.3 Building and installing libcredstore, libxos_getcred,

startxtreemos-m, startxtreemos and
startxtreemos-ams 21

2.4.4 Building and installing xos-nss-pam source code in a
ARM machine . 22

2.5 Configuration . 25
2.5.1 libcredstore . 25
2.5.2 Client node modules . 25
2.5.3 PAM and NSS modules (xos-nss-pam package) 27

2.6 Command line tools . 27
2.6.1 libcredstore command line tools 27

1

IST-033576 D2.3.4

2.6.2 Client node command line tools 28
2.7 API . 30

2.7.1 libcredstore API 30
2.7.2 libxos_getcred API 32

2.8 Usage: testing that everything works correctly 33
2.8.1 libcredstore-related tools usage 33
2.8.2 startxtreemos-m, libxos_getcred 34
2.8.3 startxtreemos, startxtreemos-ams 35

3 Terminal Mobility 36
3.1 System requirements . 36

3.1.1 Hardware . 36
3.1.2 Software . 36

3.2 Installation manual . 37
3.2.1 OpenEmbedded installation 37
3.2.2 Machine and distro selection in OpenEmbedded 38
3.2.3 Kernel modification . 38
3.2.4 OS image generation . 38
3.2.5 User tools installation 39

3.3 Configuration . 39
3.3.1 Common options . 39
3.3.2 Options common to Home Agents and Mobile Nodes . . . 39
3.3.3 Home Agent-specific option 41
3.3.4 Mobile Node-specific options 41

3.4 Command line tools . 43
3.5 Usage . 44

4 Future work 46

References 47

A Development environment for XtreemOS-MD 48
A.1 The environment . 48
A.2 Generating a development environment 49

A.2.1 Generating a bigger image 49
A.2.2 Regenerating the OS image 49
A.2.3 Connecting to XtreemOS-MD via SSH 49
A.2.4 Installing the compiler tools 50

XtreemOS–Integrated Project 2

List of Figures

1.1 XtreemOS-MD Software Architecture 9

2.1 Acquisition of credentials by a XtreemOS-aware application . . . 14
2.2 Acquisition of credentials by a legacy (XtreemOS-unaware) appli-

cation . 15
2.3 Acquisition of credentials with enhanced process isolation 15

3

Glossary

AMS Account Mapping Service

ARM Advanced RISC Machine

ARMEL ARM Emulator

API Application Programming Interface

CN Correspondent Node

FSUID File system UID

GNOME GNU Network Object Model Environment

HA Home Agent

ICMP Internet Message Protocol

IKE IPSec Key Exchange

IPsec Internet Protocol security

IPv6 Internet Protocol v6

KRS Key Retention Service

MD Mobile Device

MN Mobile Node

MIPv6 Mobile Internet Protocol v6

NSS Name Service Switch

PAM Pluggable Authentication Modules

PDA Personal Digital Assistants

PEM Privacy Enhanced Mail

PKCS Public-Key Cryptography Standards

4

IST-033576 D2.3.4

RADVD Router Advertisement Daemon

SA Security Association

SAGA Simple API for Grid Applications

SSH Secure Shell

SSL Secure Socket Layer

SVN Subversion

TCP Transport Control Protocol

UID User Identifier

USAGI UniverSAl playGround for Ipv6

VO Virtual Organization

VOM Virtual Organization Manager

WP Work Package

XtreemOS-MD XtreemOS for Mobile Devices

XtreemOS–Integrated Project 5

Chapter 1

Introduction

Mobile access to grid services is a research field that has spawned a number of
publications and projects [5, 6, 8], but whose key issues have not been yet fully
solved. Most (if not all) of them have proposed middleware-based solutions in
service-oriented form, and have encountered several problems in their implemen-
tation phase, due to the inefficiency of such protocols, specially in restricted exe-
cution environments such as mobile devices.

In XtreemOS project a different approach has been proposed, which is to inte-
grate several of the common grid functionalities into the operating system (more
concretely, into a Linux operating system), to achieve better efficiency and scal-
ability, and to increase the transparency of the grid, which would be used in the
same way as if it were a usual operating system.

In order to achieve this goal, it is necessary that the operating system “un-
derstands” grid entities such as users or resources, in order to operate with them
and enforce the Virtual Organization policies. In XtreemOS-MD, as in the other
flavours of XtreemOS, this is achieved by the so-called foundation layer (XtreemOS-
F, for short). This layer uses standard Linux methods like Pluggable Authentication
Modules (PAM) or Name Service Switch (NSS), to incorporate grid users into the
operating system’s workflows.

Moreover, in the mobile device version of XtreemOS, a number of modifica-
tions have been made to this foundation layer to make it more usable and efficient,
and an additional software package has been added to it, to provide enhanced ter-
minal mobility using Mobile IPv6 protocols.

This document describes the first basic implementation of the foundation layer
of XtreemOS-MD, and also details the processes that should be followed to build,
install and run it.

The first version of XtreemOS-MD is based around a mobile Linux distribu-
tion for PDAs called Ångström [1]. This distribution has been chosen because it
provides a good balance between modern software (as it would not make sense to
build research prototypes on outdated software) and wide hardware support (one
of the main problems of most embedded Linux distributions). However, in the

6

IST-033576 D2.3.4

development of the software great emphasis has been put in the portability and
flexibility of the code presented here, which should be integrable into any modern
mobile Linux system, regardless of the distribution used. In fact, the code has been
successfully integrated into Nokia Internet Tablets running Maemo Linux OS.

1.1 XtreemOS-MD usage scenario

To better illustrate the capabilities of the software presented in this document, and
show how the basic version of XtreemOS-MD could be used, please imagine the
following scenario1:

Jane Doe has just started working in an aerospace company, in a
project to design the wings of a passenger airline. She is in charge
of supervising the 3D models of the wing, which must comply with a
number of aerodynamic requisites, and to discuss with their providers
about the feasibility and details of obtaining the pieces of the wing.
As she will be travelling to the providers’ factories and offices to talk
with them, she has been given an internet tablet, so that she can work
while being on the move.

Just as she is heading to her first meeting with the providers, she
powers up the tablet and discovers that it is an out-of-the-box device,
with nothing installed there that could allow her to work properly.
Luckily, among the project’s documentation there is a description of
the applications they use for doing the modelling and simulation (us-
ing a grid computing facility shared by the company and the providers,
which uses something called XtreemOS for its infrastructure). It also
describes that a software repository for mobile devices is available for
her to install all the necessary software.

Following the instructions, she just configures the software repos-
itory in the tablet’s software installation application, and installs the
basic software for operating with XtreemOS. She also installs a small
application to check the status and results of the simulations that are
running in the company’s grid, as well as a popular instant messaging
application to securely chat with providers and with other members of
her team.

Once she has installed everything (without being an expert in grid
technologies or mobile devices), she starts the application to check the
simulations. The application asks for a user and password in order to
get some credentials from a security server and securely access her
simulations. After entering the correct username and password, she

1Please bear in mind that the software supports many other modes of working, this is just one
possible scenario.

XtreemOS–Integrated Project 7

IST-033576 D2.3.4

is presented with a list of all her simulations. She sees that the de-
sired simulation has finished, and visualizes the output data, which is
securely stored in some backup machine in the grid (without asking
again for username and password to access the data).

However, Jane notices that some error has ocurred, and she de-
cides to talk with one of the providers to discuss the issue. She fires
the chat application, which looks and behaves like the PC application
that she has always used in her desktop. This time, no questioning
about username and password takes place either, and a secure channel
is established for them to chat about the problem. During the conver-
sation, she is able to access all the logs from past conversations with
the provider. In the end, it seems that the input data was erroneous,
and Jane launches a new simulation from her tablet, this time with the
correct data, and just in time for the meeting.

In this scenario, both the applications and the grid services that provide the cer-
tificates and the execution and files access are software modules that depend on the
scenario’s virtual organization (the aerospace company and its providers), and thus
are out of the scope of this document. However, the underlying mechanisms for
requesting, storing and reutilizing Jane’s certificates are the focus of the software
presented here.

Also, thanks to the terminal mobility features of XtreemOS-MD (which are
also described in this document), all the aforementioned operations could be seam-
lessly performed while moving in the taxi, jumping from hotspot to hotspot, or
using the device’s cellular connectivity.

1.2 XtreemOS-MD architecture

Figure 1.1 shows the latest version of the software architecture of a XtreemOS-MD
node.

As explained in earlier project documents [12], the architecture is composed
of a number of standard software modules that are present in any mobile Linux
distribution (kernel, standard libraries, graphic user interface etc), plus a number of
XtreemOS-specific software modules, which can be grouped into two main layers:

• The foundation layer (F-layer) we already mentioned, mainly providing OS-
level support for Virtual Organizations and terminal mobility support.

• The grid services layer (G-layer), which provides the grid functionality itself,
like execution management, data management or security features, plus a
standard API for grid applications.

XtreemOS–Integrated Project 8

IST-033576 D2.3.4

Figure 1.1: XtreemOS-MD Software Architecture

1.3 F-Layer modules

The F-layer of XtreemOS for mobile devices is composed of two main software
packages:

xosmd-vosupport provides Virtual Organization support in Linux for mo-
bile devices, in a similar fashion as the package xos-nss-pam does for
the PC flavour [11]. This includes grid authentication in local nodes using
PAM, grid users information interface through NSS, plus additional mod-
ules to make it all work, like a common interface for accesing credential
storages (libxos_getcred), various methods of storing user credentials
(credstore, or the kernel’s Key Retention Service), and the (optional)
local-VO identities mapping
database (Account Mapping Service – AMS).

xosmd-mobility provides terminal mobility features for XtreemOS-MD, by
implementing Mobile IPv6 protocol [7], based on the USAGI [10] imple-
mentation of the protocol. This software module comprises both a number
of kernel patches (to enable MIPv6 low-level features), a daemon (mip6d)
for sending and receiving specific protocol messages, and the corresponding
user tools.

XtreemOS–Integrated Project 9

IST-033576 D2.3.4

1.4 Document structure

This document is structured as follows:
Chapter 2 describes how to build, install and use the VO support features of

XtreemOS-MD. This includes the system requirements, the installation process,
the steps to correctly configure the utilities and the user’s manual and APIs that
this module offers.

Chapter 3 describes the features of the terminal mobility software package,
including system requirements, installation, configuration and user tools that this
package comprises.

Chapter 4 explains the main future milestones of the development of XtreemOS-
F for mobile devices.

Finally, an appendix includes information that can be useful to XtreemOS-
MD and application developers: a description of the XtreemOS-MD development
environment.

XtreemOS–Integrated Project 10

Chapter 2

VO Support in Linux-MD

2.1 Main features

In the basic version of XtreemOS-MD, mobile devices will act only as grid re-
source consumers (e.g. launching grid jobs, accessing grid files etc), providing
lightweight access to the XtreemOS grid. Thus, it is not absolutely necessary to
implement the same VO support mechanisms as for the PC flavor of XtreemOS,
which is targeted at PCs that do share their resources in a virtual organization.

The main goal of the software presented here is to make the access of client-
side grid applications (specially mobile applications) easier and more transparent.
This is done by providing a flexible framework for managing XtreemOS credentials
in a mobile node (to implement single sign-on features), and by including a number
of mechanisms for transparently acquiring and managing these credentials, both
for XtreemOS-aware and legacy (XtreemOS-unaware) applications.

On the other hand, since different mobile users have different ways of work-
ing, and there could be users who want some degree of isolation between their
grid-related applications and non-grid applications, some of the mechanisms for
mapping grid and local users developed for the PC flavour (see D2.1.2 [11])
have also been adapted to mobile devices. This also has the advantage of providing
a first stepping stone in the way to sharing the resources of mobile devices with the
grid (an option that will be investigated in the advanced version).

Apart from these features, the software described in this chapter has also been
implemented with portability in mind, both between hardware platforms and be-
tween different Linux distributions. The platform portability is important since
most of the enhancements presented here are also useful in a PC or even in a clus-
ter environment, and as such they are being ported to the other XtreemOS flavors.
Linux distribution portability is also important because the fragmentation of the
Linux (and specially mobile Linux) market makes distribution-agnosticism very
advisable for exploitation purposes.

This software also supports internationalization, and thus all the messages
and user interactions can be easily translated to other languages.

11

IST-033576 D2.3.4

Finally, it is also worth noting that, although these software modules have been
designed with XtreemOS in mind, the mechanisms could also be used by any other
system that uses PKI credentials, with minor modifications.

2.2 Software description

The VO support funcionalities of XtreemOS-MD are grouped in two software
packages:

• xosmd-vosupport provides the minimal VO support features necessary
for using a mobile Linux device as a XtreemOS grid client. This package
includes:

– A set of launcher applications designed to transparently perform all the
necessary operations for initializing XtreemOS VO support features in
a Linux distribution, under a number of VO and mobile device config-
urations.

∗ startxtreemos-m is the simplest implementation, which does
not rely on external software and does not isolate grid applications.
Ideal for systems that do not support PAM modules (i.e. libpam)
and do not require special isolation for grid-related applications.

∗ startxtreemos relies on the XtreemOS PAM module (i.e.
xos-nss-pam and libpam) to perform the authentication, but
does not provide any isolation for grid-related applications.

∗ startxtreemos-ams provides isolation for grid-related pro-
cesses by mapping the current user session to a new (temporary)
local identity generated on the fly, mapped to the grid identity rep-
resented in the XtreemOS credentials. Requires the xos-nss-pam
and libpam packages.

– A generalized abstraction of a credential store to implement single
sign-on features in XtreemOS-MD and the necessary API to manipu-
late these stores, to be used by end user applications (libxos_getcred)
and by other XtreemOS components (libcredstore).

– A minimal but complete credential store implementation that does not
depend on any external software (uskeystore).

– Another implementation of a credential store, using the Linux kernel
Key Retention Service (krs).

– A way for legacy (XtreemOS-unaware) applications to get access to
these credential stores (libxos_wrapopen).

– Additional graphical applications for mobile users to interact in the
credential management process (read_protected_credfile).

XtreemOS–Integrated Project 12

IST-033576 D2.3.4

• xos-nss-pam is a porting of the VO support features available in the PC
flavor of XtreemOS. With this package installed, XtreemOS-MD users ob-
tain:

– Credentials-based authentication using the XtreemOS PAM module
(which, in turn, depends on libpam).

– A certain level of isolation between grid-related and ordinary, local
processes, through the mapping of the user’s grid identity to a different
local identity.

Since the xos-nss-pam features and software components (namely, the
XtreemOS NSS and PAM modules, and the AMS daemon) are already explained
in the PC flavour user manual (see D2.1.2 [11]), we will concentrate here on
the xosmd-vosupport features and documentation, with mobile-specific ref-
erences to xos-nss-pam where appropriate (e.g. to detail the installation proce-
dure of this package in a mobile device).

In the following sections we will describe how all these elements work together
to attain the aforementioned VO support features, and we will also describe each
of them in detail.

2.2.1 Typical usage scenarios

Figure 2.1 shows how these elements work together in the scenario of a XtreemOS-
aware application which requests a grid user credential (in XtreemOS called XOS-
Cert) for later access to any XtreemOS grid service. In this case, the application
does not know (or care) whether the credentials are already available locally or not
but, in the end, the credentials are delivered, and they will be stored locally in case
the same or other application or grid service needs them.

Figure 2.2 shows the inner workings of the scenario where the application does
not even know any grid-related library. In this case, the credential store can be
accessed via simple file opening commands, through the libxos_wrapopen
library.

And finally, figure 2.3 shows how further process isolation can be attained
through the usage of the VO support mechanisms available in the xos-nss-pam
package. In this case, the user must explicitly start the startxtreemos-ams
helper, since it must be executed with the setuid root attribute. A session (or an
application) with a new, temporary local user is started (mapped to the grid identity
provided by the XOS-Cert), and all subsequent applications and grid services are
executed with that new local identity.

2.2.2 libcredstore and libxos_getcred

A credential store (credstore for short) is a mechanism for storing/retrieving a
credential (e.g. a X.509 certificate like the XOS-Certs XtreemOS uses), with sup-
port for establishing credential timeouts or manually deleting the credential. The

XtreemOS–Integrated Project 13

IST-033576 D2.3.4

Figure 2.1: Acquisition of credentials by a XtreemOS-aware application

current libcredstore library is intended for abstracting the credstore func-
tionality from the concrete implementation, and allows for several different mech-
anisms for the implementation of the credstore. Right now, two implementations
are provided with the software, one based on the Linux Kernel Key Retention Ser-
vice (KKRS) (krs, with variations for storing credentials in compressed format –
zkrs) and a user space daemon implementation (called uskeystore).

Each user in the system has its own user credstore and may also have several
session credstores. A user credstore can be accessed by all the processes executed
by a user, while a session credstore can be accessed only by one concrete process
of a certain user (the typical example being a command line shell), and all its
children.

Currently, each credstore can store only one credential1, since supporting mul-
tiple credentials is against the philosophy of single sign-on security. However, we
are aware that, under different configurations, the user could have to manage differ-
ent identities or credentials, and thus labelling of credentials with a configuration
name is supported. If an application asks for a credential from the credstore, it may
check that the configuration name of the stored credential is the one expected by
the application. Configuration name “default” is assigned when a new credential is
stored without specifying a configuration name.

1From now on, we will denote with the word “credential” the set of objects stored in the credstore,
which are the XtreemOS certificate (with the public key) and the corresponding private key.

XtreemOS–Integrated Project 14

IST-033576 D2.3.4

Figure 2.2: Acquisition of credentials by a legacy (XtreemOS-unaware) application

Figure 2.3: Acquisition of credentials with enhanced process isolation

XtreemOS–Integrated Project 15

IST-033576 D2.3.4

libcredstore

libcredstore is a credential storage abstraction library. The goal of a
libcredstore is to provide a credentials cache, in order to implement a sin-
gle sign-on mechanism, independently of the real storage system used (e.g. the
Kernel Key Retention Service). libcredstore abstracts the use of the Key Re-
tention Service and allows for the use of other replacements without modifying or
recompiling applications. This feature is very important in embedded devices, as
recompiling and replacing the kernel may be very complex for non-expert users
(i.e. the Key Retention Service is generally not compiled by default and cannot
be installed as module). For example, in Maemo Nokia devices (e.g. N800 and
N810), users can install applications with a click, but to support KRS it requires
that the user reflashes the device to change the kernel, with the subsequent risk of
making the device unusable (also known as “bricking” the device).

libcredstore uses the Key Retention Service by default if it is supported
by the runtime kernel, with a new feature: it compresses and decompresses keys on
the fly. It does not require that the libkeyutils package is installed, because
it invokes syscalls directly. If the kernel does not support KRS, libcredstore
detects that the syscall fails and uses a replacement consisting in daemons executed
in user space (e.g. uskeystore).

The libcredstore API is not needed by programs that use XtreemOS:
these applications will use libcredstore indirectly, either through the
libxos_getcred API, the PAM module API or higher level APIs like SAGA
(which would invoke libcredstore internally). Thus, end user applications
should not be linked with libcredstore. Instead, they should be linked with
libxos_getcred or libpam (or the corresponding SAGA equivalent). Client
applications that need to obtain a credential use libxos_getcred, and node
resource applications that need to authenticate a user through its XtreemOS cre-
dential use libpam.

The functionalities covered currently in libcredstore are reading, writ-
ing and deleting a credential, and it also allows setting a timeout after which the
credential is purged from the credstore.

Further documentation about libcredstore and its associated tools is present
in the “Command line tools” section (2.6). These tools are replacements of keyctl,
the command line utility provided with the KKRS implementation in the PC flavor.

libxos_getcred

In order to ease the labors of end user application developers, a simpler interface
has been implemented for retrieving credentials, relieving the developer of need-
ing to know the credstore’s API and the protocols that should be followed to use
it correctly. This library (libxos_getcred) makes the adequate calls to the
libcredstore API in order to obtain the credential, and launches the avail-
able version of startxtreemos to obtain the credential if the credential is not

XtreemOS–Integrated Project 16

IST-033576 D2.3.4

present in the credstore.
The aim of this library is to ease the implementation of a caching single sign-on

system. It provides a method for applications to obtain a XtreemOS credential (al-
though the mechanism is generic, and can be used with other types of credentials)
and ensures that this credential is cached to avoid disturbing users by asking them
for a password every time an application needs to use the credential.

Any application using it just needs a simple library call for obtaining the cre-
dential, which will be cached in a credential store (credstore), e.g. to avoid asking
every application for passwords in case they would like to use the key. When an
application uses this library, it obtains the current credential in the credstore (if it is
not empty and the configuration name of the stored credential is the same as the one
required). Otherwise, startxtreemos (see below) is launched automatically.

2.2.3 New client software: startxtreemos*
Client grid nodes need a method for user applications to obtain a XtreemOS cre-
dential (although the mechanism is generic, and can be used with other types of
credentials), as well as to ensure that this credential is cached (using
libcredstore) to avoid disturbing users, asking them for a password every
time an application needs to use the credential (i.e. to provide single sign-on).

The current implementation in XtreemOS-MD offers two methods to start a
XtreemOS session, by obtaining a user credential, which is then shared with other
applications using the credstore:

• Explicit start of the XtreemOS session, by invoking one of the startxtreemos
tools.

• Automatic, on-demand startup of the XtreemOS session, when an applica-
tion demands a credential2. If the credential is not present in the credstore
or the credential is labelled with a configuration name different from the one
requested by application, startxtreemos is invoked automatically.

The explicit call to startxtreemos allows for advanced operations like,
e.g. to start a new session (with its own session credstore), run a program in its
own session or set a timeout for the session.

There are three versions of the startxtreemos tool, depending on the kind
of usage that the user (and the virtual organization under which he operates) re-
quires from XtreemOS-MD:

• startxtreemos-m is the simplest implementation, which does not rely
on any external software and does not isolate grid applications from other
user applications (i.e. grid applications are started using the same local UID
that was being used). This implementation is recommended specially for

2The act of demanding a credential can be achieved both by XtreemOS-aware (by using the
libxos_getcred library) and legacy applications (by opening a file called “::xos:config_name”).

XtreemOS–Integrated Project 17

IST-033576 D2.3.4

embedded systems, that do not support PAM modules (i.e. libpam) and do
not require special isolation for grid-related applications.

• startxtreemos provides the same functionality as the startxtreemos-m
version, but it relies on the XtreemOS PAM module (i.e. xos-nss-pam
and libpam) to perform the authentication.

• startxtreemos-ams, additionally, provides isolation for grid-related
processes by mapping the current user identity to a new (temporary) local
identity generated on the fly, corresponding to the grid identity represented
in the XtreemOS credentials. This version requires the xos-nss-pam and
libpam packages.

In order to obtain the credential that corresponds to the specified configuration
name (e.g. “config_name”), the current implementation searches for a
<config_name>.pem file in the /etc/xos/creds/ directory. This is just
a proof of concept until a proper mechanism for obtaining the credential (e.g.
by connecting to the Credential Distribution Agency – CDA) is developed in the
XtreemOS-G layer.

Since this way of working would be insecure (if any user can read directly
/etc/xos/creds, the credstore’s security is useless), a more secure implemen-
tation option is provided. If the software is compiled with the
USE_READ_PROTECTEDCRED_HELPER=1 option set in the Makefile, then a
more advanced mechanism is used to read the credential, based on a helper GTK+
program (read_protected_credfile).

When using this mechanism, /etc/xos/creds/ and all the credentials it
contains, is only readable by the “startxtreemos” group. However, the helper pro-
gram has the appropriate setgid attribute, and can read this directory. The helper
program asks for user confirmation to read the file (in case the process was not
started by a user application but by some other malicious application), reads it and
returns it to startxtreemos. This helper program is invoked only to read cre-
dentials from /etc/xos/creds, not for reading credentials from the credstore.

Optionally, the credential files in /etc/xos/creds can be encrypted. These
files are currently denoted with the “.crypt” extension instead of “.pem”. In this
case, the helper program asks the user for the passphrase to decrypt the key. The
user is not asked again about the passphrase while the credential is in the credstore,
since the credential is already stored in the credstore in unencrypted form.

This helper program is configurable using the
/etc/xos/read_protected_credfile.conf file.

2.2.4 Mechanisms for legacy applications: libxos_wrapopen

Since one of the main goals of XtreemOS-MD (and of XtreemOS in general)
is transparency for applications trying to use the grid, even for legacy applica-
tions, the VO support features of XtreemOS-MD include a mechanism for these

XtreemOS–Integrated Project 18

IST-033576 D2.3.4

XtreemOS-unaware applications to access the credentials that will enable them
to later access the XtreemOS grid services. This mechanism is implemented in the
libxos_wrapopen library.

This library uses a procedure which is analogous to the one used by applica-
tions using SOCKS, through the usage of the LD_PRELOAD environment vari-
able. This variable indicates a library which will have precedence over any other
library (libc included), effectively overriding the open() call for opening files.
In the current implementation, just invoking open() with “::xos:config_name”
as a parameter, will try to fetch (through the usual libxos_getcred interface
explained above) the credential whose configuration name is “config_name”.

2.3 System Requirements

2.3.1 Hardware

The compiled binaries available from the repositories run in any ARMv5 or upper
ARM processor, with at least 16 MB of RAM. They are also able to run in a QEMU
emulator that may run in any modern PC with a PentiumIII/IV/Celeron processor
and at least 512 MB of RAM.

2.3.2 Software

The software requirements of the VO support functionalities ported from the PC
flavor (xos-nss-pam) are described in D2.1.2 [11]. The software requirements
of the different components of the xosmd-vosupport package are:

• libcredstore only depends on libz-dev. This dependency is needed
only at build time, not at runtime, because the library is compiled with the
static version of libz library.

• libxos_getcred and startxtreemos-m do not have any dependen-
cies. But if the project is compiled with the option
USE_READ_PROTECTEDCRED_HELPER=1 in the Makefile (i.e.
read_protected_credfile is built), then libgtk+ 2.12 or upper and
libcrypto 0.9.7 or upper (normally part of the openssl package) are
required. The Maemo porting of the software also depends on the Hildon
libraries.

• starxtreemos and startxtreemos-ams depend on libpam. At
runtime, they use xos-nss-pam source code (XtreemOS PAM and NSS
modules, xos_amsd daemon, libxos_db, libxos_security,
libxos_ams, libxos_plymgt, libopenssl/libcrypto 0.9.8 and
libdb 4.3).

XtreemOS–Integrated Project 19

IST-033576 D2.3.4

Caveats and known issues

At runtime, applications with l12n files running in Ångström, messages do not
appear according to the locale if package glibc-binary-localedata-* is
not installed.

For example, in order to see the messages in Spanish in Ångström, the com-
mand ipkg install glibc-binary-localedata-es-eswould be needed.

2.4 Installation manual

Although all the different software components are currently part of the same soft-
ware package (xosmd-vosupport), different users will have different needs
with regard to the VO support and single sign-on features that they require. De-
pending on the concrete components that the user (or the Linux integrator or dis-
tributor) needs, different building and installation alternatives can be followed:

• If only the bare minimum functionality (the credstore abstraction) is needed,
because all the other mechanisms are going to be implemented specifically
for the concrete mechanisms of the VO/distribution, then only the
libcredstore library must be built and installed (see section 2.4.1).

• If a lightweight but complete implementation of the single sign-on mech-
anisms and easy integration for end user applications is desired, then the
libcredstore and libxos_getcred libraries, plus the
startxtreemos-m launcher application, must be built and installed (see
section 2.4.2). This is the recommended configuration for most cases.

• If a complete implementation of the single sign-on mechanisms and easy in-
tegration for end user applications is needed, and isolation of grid-related and
local processes is desired, then the libcredstore and libxos_getcred
libraries, plus all the startxtreemos* applications, must be built and in-
stalled (see section 2.4.3). In addition, we also need to build and install the
VO support features ported from the PC flavor (the xos-nss-pam pack-
age, see section 2.4.4). This option is experimental, and is recommended
only for expert users.

The different installation alternatives are described below3:

2.4.1 Building and installing libcredstore

libcredstore is part of the xosmd-vosupport project/package. An INSTALL
file in the project source code contains more detailed instructions, but the basic pro-
cess is:

3Since the software is also being ported to Maemo (for Nokia tablets), instructions are also given
where appropriate.

XtreemOS–Integrated Project 20

IST-033576 D2.3.4

1. Install the libz-dev package.

2. Run make install-credstore as root or run
make package-credstore.tgz and unpack the
package-credstore.tgz file into your system, wherever you want to
install the package.

3. The software is normally installed in /usr/local; it may be necessary to
invoke ldconfig4, or the addition of /usr/local/lib to
/etc/ld.so.conf.

2.4.2 Building and installing libcredstore, libxos_getcred
and startxtreemos-m

Currently, the source code of all these modules is part of the xosmd-vospport
project/package. An INSTALL file in the project source contains more detailed
instructions, but the basic process is:

1. Install the libz-dev package.

2. If we want to include read_protected_credfile, edit the Makefile
and uncomment the line
USE_READ_PROTECTEDCRED_HELPER=1. If building for Maemo, also
uncomment USE_MAEMO=1.

3. Run (as root) make install-m or run make package-m and unpack
package.tgz to the desired location to install the package and, after un-
packing, run ./postinstall.sh.

4. The application will look for credentials in /etc/xos/creds; you may
copy the content of the examplecreds file in /etc/xos/creds (it
contains some example credentials that can be used for testing the instal-
lation).

5. The software will be normally installed in /usr/local; it may be neces-
sary to invoke ldconfig5 or to add /usr/local/lib to
/etc/ld.so.conf.

2.4.3 Building and installing libcredstore, libxos_getcred,
startxtreemos-m, startxtreemos and
startxtreemos-ams

Currently, the source code of all these modules is part of the xosmd-vospport
project/package. An INSTALL file in the project source contains more detailed
instructions, but the basic process is:

4That is, executing ldconfig /usr/local/lib as root.
5That is, executing ldconfig /usr/local/lib as root.

XtreemOS–Integrated Project 21

IST-033576 D2.3.4

1. Install the libz-dev package.

2. Install the pam-dev package. This package is not included in Ångström
(nor Maemo), see below for instructions about compiling the package.

3. If we want to include read_protected_credfile, edit the Makefile
and uncomment the line
USE_READ_PROTECTEDCRED_HELPER=1. If building for Maemo, also
uncomment USE_MAEMO=1.

4. Run (as root) make install-m or run make package-m and unpack
package.tgz to the desired location to install the package and, after un-
packing, run /postinstall.sh.

5. The application will look for credentials in /etc/xos/creds; you may
copy the content of the examplecreds file in /etc/xos/creds.

6. In /etc/xos there are examples of configuration files. The /etc/pam.d
directory contains the required files to configure PAM programs. You may
invoke make install-all instead of make install and
make package-all instead of make package to also include the ex-
ample configuration files and credentials.

7. The software will be normally installed in /usr/local; it may be neces-
sary to invoke ldconfig6 or to add /usr/local/lib to
/etc/ld.so.conf.

2.4.4 Building and installing xos-nss-pam source code in a ARM
machine

The process of building and installing the VO support code provided by the
xos-nss-pam package in a mobile device is described below (including the
support for libcredstore). Both instructions for Ångström distribution and
Maemo (Nokia N800/N810) are provided. This PC flavor code is required by
startxtreemos and startxtreemos-ams (but not for startxtreemos-m
/ libxos_getcred). It would also be necessary if the device runs as a grid re-
source node and uses the PAM module to authenticate grid users (a functionality
currently not supported in XtreemOS-MD).

Detailed instruction for this installation is included in the xos-nss-pam
source code (see README.Angstrom and README.Maemo files).

The process for building the code inside an Ångström distribution, for example
using the QEMU-based development environment (see appendix A), is as follows7:

6That is, executing ldconfig /usr/local/lib as root.
7Currently, the Maemo binaries are also compatible with Ångström, but this is not guaranteed in

future releases of Ångström and Maemo.

XtreemOS–Integrated Project 22

IST-033576 D2.3.4

1. Install libdb and check

ipkg install db-dev check-dev

2. Install PAM. Unfortunately, the PAM package is not included in Ångström,
so we need to compile it:

ipkg install flex-dev tar
wget http://www.kernel.org/pub/linux/libs/pam/library/Linux-PAM-1.0.0.tar.gz
tar xzvf Linux-PAM-1.0.0.tar.gz
cd Linux-PAM-1.0.0/
./configure CFLAGS=-fno-strict-aliasing
make install

3. The software also requires OpenSSL 0.9.8, but Ångström only provides
OpenSSL 0.9.7. Thus, we need to download and compile OpenSSL 0.9.8:

ipkg install perl-module-integer
wget http://www.openssl.org/source/openssl-0.9.8g.tar.gz
cd /openssl-0.9.8g
./config --prefix=/usr/local shared
(remove optimizations (-O3) in the Makefile)

4. The software also depends on libcredstore (see above):

ipkg install libz-dev
(if you would like to compile read_protected_file helper):
ipkg install pkgconfig gtk+-dev renderproto-dev
cd xosmd-vosupport
make install-all

5. Finally, we will be able to compile the source code of the xos-nss-pam
package. Since SVN source code of xos-nss-pam does not include a
configure script, we must generate it using autoreconf -install
-force outside QEMU (e.g. in a PC machine) and copying it afterwards.

./configure CFLAGS=-Wall
make install

6. Configure /etc/nsswith.conf. We must edit two lines: the lines that
starts with passwd: and the line that starts with group. In both cases,
append at the end of the line xos.

7. Create a /etc/xos/cacert directory and copy the file
./src/examples/testcerts/xosca/xtreemos-ca.crt into it.

8. Edit /etc/xos/pam-xos.conf and change the value of option
VOCaCertDir to /etc/xos/cacert.

9. The software normally will be installed in /usr/local. It may be neces-
sary to invoke ldconfig8 or to add /usr/local/lib to
/etc/ld.so.conf.

8That is, executing ldconfig /usr/local/lib as root.

XtreemOS–Integrated Project 23

IST-033576 D2.3.4

On the other hand, the steps for building the software in a Maemo 4 platform
(Nokia N800 and N810 Internet Tables) is as follows9:

1. Start scratchbox and change to an ARMEL target:

sb-conf se CHINOOK_ARMEL

2. Download, compile and install flex (we need flex only to compile PAM;
afterwards we may delete it safely):

wget http://prdownloads.sourceforge.net/flex/flex-2.5.35.tar.gz
tar xzvf flex-2.5.35.tar.gz && cd flex-2.5.35 && ./configure && \
make install

3. Download, compile and install PAM:

wget http://www.kernel.org/pub/linux/libs/pam/library/Linux-PAM-1.0.0.tar.gz
tar xzvf Linux-PAM-1.0.0.tar.gz && cd Linux-PAM-1.0.0/ && configure && \
make install

4. Download, compile and install OpenSSL 0.9.8 (the 0.9.7 version available
in Maemo is not sufficient):

wget http://www.openssl.org/source/openssl-0.9.8g.tar.gz
tar xzvf openssl-0.9.8g.tar.gz && cd openssl-0.9.8g && \
./config --prefix=/usr/local shared && make install

5. Download, compile and install check:

wget http://ftp.debian.org/debian/pool/main/c/check/check_0.9.2.orig.tar.gz
tar xzvf check_0.9.2.orig.tar.gz && cd checkr-0.9.2 && ./configure && \
make install
cp /usr/local/share/aclocal/check.m4 /usr/share/aclocal/

6. Install libz-dev (needed to compile libcredstore):

apt-get install libz-dev

7. Download, compile and install libcredstore (which is inside package
xosmd-vosupport):

cd xosmd-vosupport
make install-credstore

8. Download, compile and install libdb-4.3 (or as an alternative, this pack-
age from the Ångström distribution):

wget http://download.oracle.com/berkeley-db/db-4.3.29.tar.gz
tar xzvf db-4.3.29.tar.gz
cd db-4.3.29
patch -p2 < patch-libdb4.3.29.oe.patch
cd build_unix
env CFLAGS=-Os ../dist/configure --enable-o_direct \
--disable-cryptography --disable-queue --disable-replication \
--disable-statistics --disable-verify --enable-compat185 \
--prefix=/usr/local/ --with-mutex=ARM/gcc-assembly
make

9In this case, Scratchbox and the Maemo SDK are needed. Please follow the instructions de-
scribed in http://tablets-dev.nokia.com/4.0/INSTALL.txt

XtreemOS–Integrated Project 24

IST-033576 D2.3.4

9. Finally, compile and install the source code of xos-nss-pam itself:

svn checkout \
https://scm.gforge.inria.fr/svn/xtreemos/WP2.1/T2.1.3/trunk/src/nss_pam/
cd nss_pam && autoreconf --install --force
./configure && make install

10. Install the software into a N800 machine (we will need root access with
SSH). Create this package in scratchbox and decompress it in the N800:

tar czvf wp21-package.tgz /usr/local/bin/xos* \
/usr/local/lib/libcrypto.so.* /usr/local/lib/libssl.so.* \
/usr/local/lib/libdb-4*.so /usr/local/lib/libcredstore.so* \
/usr/local/lib/libnss_xos.so /usr/local/lib/pam_xos.so* \
/usr/local/lib/libxos_*.so /etc/xos/* /lib/libpam.so*

11. Configure /etc/nsswith.conf. In this case, we must edit two lines:
the lines that starts with passwd: and the line that starts with group. In
both cases, append at the end of the line xos.

12. Create a /etc/xos/cacert directory and copy the file
./src/examples/testcerts/xosca/xtreemos-ca.crt into it.

13. Edit /etc/xos/pam-xos.conf and change the value of option
VOCaCertDir to /etc/xos/cacert.

14. The software normally will be installed in /usr/local. It may be neces-
sary to invoke ldconfig10 or to add /usr/local/lib to
/etc/ld.so.conf.

2.5 Configuration

2.5.1 libcredstore

The current libcredstore implementation does not have any configuration
files. Credential files are expected to be in the /etc/xos/creds directory.
The naming convention is that unencrypted files end with .pem extension, and
encrypted files end with .crypt.

2.5.2 Client node modules

As an API, libxos_getcred does not require any special configuration. How-
ever, some comments must be made about an advanced feature of the library: alias-
ing.

10That is, executing ldconfig /usr/local/lib as root.

XtreemOS–Integrated Project 25

IST-033576 D2.3.4

Aliasing in xos_getcred()

Applications may invoke xos_getcred()with a not-NULL configuration name.
For example, each application may choose its own application name as the configu-
ration name. But, if each application uses a different configuration name, the single
sign-on mechanism will be useless, since each configuration name corresponds to a
different credential (and the current implementation can only store one credential).

The solution is that the device administrator defines (in
/etc/xos/configname_alias) that a group of configuration names are ac-
tually the same credential (i.e. it is an aliasing method). The syntax of the file
consists of one or more lines, each one with a series of configuration names sep-
arated by “/”. All names specified in the same line are considered aliases of the
first name. When an application invokes xos_getcred, if a name is found in
/etc/xos/configname_alias, it is replaced with the first name of the line
in which it appears.

For example, with the line:

default/internet/mail/xmpp/xtreemos

If an application invokes xos_getcred("xmpp"), the configuration name used
is “default” instead of “xmpp”.

read_protected_credfile configuration

The read_protected_credfile program is configurable using
/etc/xos/read_protected_credfile.conf. Current version supports
four parameters in the security section:

forced_display this option is used to hardcode a value in the DISPLAY variable.
The objective is to avoid that a malicious application changes the display
to other machine in order to confirm that reading a file under /etc/xos/
directory is authorized (instead of showing it to the user).

grabserver if this option is true, the GTK+ client will “grab” the X-Window
server. This is a security measure, used to avoid that a malicious applica-
tion reads the password, or sends an event to confirm a dialog bypassing
user interaction.

autokill_after kills the program helper if the user does not respond after the spec-
ified number of seconds.

lockfile allows to specify a lock file to avoid that several instances of the program
run simultaneously. If the system is multiuser, probably you should use a file
under the user’s home directory.

XtreemOS–Integrated Project 26

IST-033576 D2.3.4

startxtreemos* configuration

Both startxtreemos and startxtreemos-ams use xos-nss-pam code
and therefore they are indirectly affected by its configuration files, that are usually
stored in /etc/xos. Please refer to the PC flavor VO support deliverables for
more information [11].

2.5.3 PAM and NSS modules (xos-nss-pam package)

These modules have been originally developed for the PC flavor of XtreemOS.
They have been ported to a mobile device architecture (ARM), and they are used
by startxtremos and startxtreemos-ams (however, they are not used by
startxtreemos-m or libxos_getcred). The configuration of these mod-
ules is covered in the PC flavor VO support deliverables [11].

2.6 Command line tools

2.6.1 libcredstore command line tools

The libcredstore library also contains some useful command line tools for easily
accessing its functionality:

xos_dumpcred [<configuration_name>]
If no configuration name is specified, it returns the credential stored in the

credstore (if any). If a configuration name is specified, first it checks that the con-
figuration name is the current configuration name of the credstore; then returns
nothing if they are different.

xos_currentconfig
Returns the configuration name of the credential assigned to the credstore, if it

is not empty.

xos_deletecred
Deletes the current credential from the credstore, if any.

xos_settimeout
Sets a timeout (in seconds) after which the credential is purged from the cred-

store. Setting a new timeout always overwrites the previous timeout. Zero value
cancels the timeout.

xos_storecred [<filename>[<configname>]]
If a filename is specified, this command saves in the credstore the contents

of the file. If a configname is specified, it also fills in the current configuration

XtreemOS–Integrated Project 27

IST-033576 D2.3.4

name with the configname. If no filename is specified, it will read the content from
standard input.

This tool should not be used in a normal session. The PAM module in resource
nodes and the startxtreemos tool in client nodes should be responsible for
storing the credential in the credstore. This utility is useful just for testing purposes,
or if machine administrators prefer to pre-load a credential manually.

xos_credstored
This daemon is automatically launched when needed, and so ordinary users

may ignore this command. Advanced users may start it manually if preferred.
This executable is the daemon that implements the user-space credstore

(uskeystore). The KRS implementation therefore does not use this daemon.
A session credstore (which can be started with the command startxtreemos
-s, see below) does not use this daemon either11.

The daemon creates a Unix socket in the user’s home directory, named
“socket_xoscredstore_<uid>”. Only programs with the same UID as
xos_credstored can use the socket to communicate with the daemon.

xos_credstored daemons run until the machine is powered off, because
they are shared among different sessions of the same user and the credentials sur-
vive the session that stored it. But the daemon will eventually die if the credentials
time out or are deleted (with delete_cred).

On startup, xos_credstored tests that the same daemon is not already run-
ning. The test consists in a special request to the daemon using the aforementioned
Unix socket.

2.6.2 Client node command line tools

startxtreemos[-m] [-c <configuration_name>] [-t <seconds_timeout>]
[-s] [<program_name> [<program_parameters>] | -]

This multipurpose program is designed to run one or more of this tasks:

• Loading credentials in the current user credstore or starting a new session
credstore and loading credentials in it.

• Running a program or a script read from standart input, which has access to
the credstore.

• Setting a credential timeout.

The -c option is used to specify the configuration name of the requested cre-
dential to use. If no configuration_name is specified, it is assumed that the user
would like to use the credential currently present in the credstore; if the credstore
is empty, the “default” credential is requested.

11Session credstores are implemented as children of the process that launched the session, and
they die when the parent process dies.

XtreemOS–Integrated Project 28

IST-033576 D2.3.4

The -t option is used to set a timeout (expressed in seconds) over the creden-
tial. When the timeout expires, the credential is removed. A zero value cancels
timeout.

The -s option launches a program (or a shell, if no program specified) in a
private session, with its own credstore that is destroyed when program/shell ends.

A program to run may be specified, or use “-” parameter to get shell com-
mands from stdin. If no program_name or “-” parameter is specified, then
a shell is executed (if using “-s”) and the ENV variable is defined with value
/etc/xos/shrc_xtreemos. Otherwise, startxtreemos only guarantees
that a credential is available in the credstore and sets the timeout, if specified.

startxtreemos-ams [-c <configuration_name>] [-r] [<program_name>
[<program_parameters>] | -]

This program obtains the credential corresponding to configuration_name (or
gets it from the current user credstore if available) and runs the program specified
(or a shell if none is specified) with a new UID. This UID is computed using the
Account Mapping System rules (see [11]) and the data present in the certificate of
the credential.

The -c option is used to specify the configuration name of the requested cre-
dential to use. If no config_name is specified, it is assumed that the user would like
to use the credential currently present in the credstore; if the credstore is empty, the
“default” credential is requested.

The -r option replicates the credential in the credstore of the user that in-
vokes startxtreemos-ams. The goal of this action is to cache the creden-
tial and avoid asking the user again if he prefers running other commands with
startxtreemos-ams using the same configuration.

A program to run may be specified, or use “-” parameter to get shell commands
from stdin. If no program_name or “-” parameter is specified, then a shell is exe-
cuted and /etc/xos/shrc_xtreemos is specified in the ENV variable. Before
the program/shell is executed, current environment is cleared and variables HOME,
SHELL, PATH, USER, LOGNAME and XOS_ENV are filled with appropriate values.

xos_getdumpcred [<configuration_name>]
This program is a usage example of libxos_getcred. It dumps the cur-

rent credential present in the credstore; if the credstore is empty, or a configura-
tion_name is specified and the credential in the credstore is labeled with a different
configuration name, startxtreemos is invoked to load the new credential in
the credstore.

xos_getdumpcred reads the configuration file /etc/xos/configname_alias
to convert the configuration name from any of its aliases, as defined in that file.

read_protected_credfile <configuration name>
Users are not expected to run this program directly. Instead, it is designed to

XtreemOS–Integrated Project 29

IST-033576 D2.3.4

be invoked by startxtreemos. This program is a helper utility, setgid to group
“startxtreemos”, that reads a credential from /etc/xos/creds that ordinary
users cannot read because of lack of permissions. This program is also used to ask
the user for a password to decrypt the credential in case it is encrypted.

2.7 API

2.7.1 libcredstore API

This API is mainly of interest for programmers that would like to integrate
libcredstore in a new project or extend it with a new module. The last updated
API documentation is always included with the project itself, using the doxygen
utility.

The usage of the API is very simple: a program just needs to include
credstore.h in the code and invoke get_creds_store_funcs(). This
function returns a struct creds_store_funcs with pointers to functions
(e.g. delete_cred member is used to revoke a key, store_cred is used to
save the key, retrieve_cred to get the key...). There also exists a
get_creds_store_funcs_by_impl, in order to retrieve a specific imple-
mentation of the credstore. Current implementations include:

krs the usual Key Retention Service-based implementation.

zkrs is the same as krs, but in this case store_cred compresses the key and
retrieve_cred uncompresses it. Compress ratio gain is variable, but
as a reference, the size of /etc/xos/creds/config2.pem example
credential is reduced to 69% of the original size.

uskeystore (user-space keytore) this implementation is based on a daemon
per user (or per session). It is designed to make it easier to modify the im-
plementation to use a system daemon, instead of a daemon per user, or to
adapt the module to use e.g. the GNOME keyring12.

Current implementation of get_creds_store_funcs returns zkrs point-
ers if KRS is available, otherwise returns uskeystore function pointers.

Caveats and known issues

To ease debugging, the Makefile compiles libcredstore with the
USE_CREDSTORE_IMPL_ENV variable defined. With this compilation option,
get_creds_store_funcs first tests if environment variable
CREDSTORE_IMPL is defined; in this case, it invokes
get_creds_store_funcs_implwith the variable value. However, it is safer

12The SVN version of gnome-keyring has exciting features like a PCKCS#11 module or integra-
tion with ssh-agent (see http://live.gnome.org/GnomeKeyring/Cryptoki)

XtreemOS–Integrated Project 30

IST-033576 D2.3.4

for a production-strength library to be compiled without this option (leaving the
variable undefined).

These are the function pointer members of struct_creds_store_funcs13:

int store_cred(char *data_in_pem_format);
This functions stores the credential that the user passes in PEM format (base64

encoded). If other credential is already stored, the new credential will overwrite it.
Returns 0 on success, -1 on error.

char* retrieve_cred (char *config_name);
If config_name is NULL, this function returns the credential stored in the

credstore (e.g. in Key Retention Service). If config_name is not NULL, first it
checks if config_name is the current configuration name in the credstore; re-
turns NULL if they are different.

int check_cred_is_available (char *config_name);
This function is similar to retrieve_cred, but returns 1 if the credential to

this config_name is available, 0 otherwise (instead of the credential/NULL).

int set_cred_timeout (int timeout);
This function sets a timeout (in seconds) after which the credential is purged

from the credstore. A zero value cancels the timeout. Returns 0 on success, -1 on
error.

int delete_cred ();
Purges the credential from the credstore. Returns 0 on success, -1 on error.

char * get_current_cred_configname ();
This function returns the current configuration name of the key stored in the

credstore. The initial value is “default”. Returns NULL on error.

int set_current_cred_configname (char *config_name);
This functions sets the current configuration name of the key stored in the cred-

store. Returns 0 on success, -1 on error.

char * join_new_session ();
Up to now, all functions operate over the current user credstore. This func-

tion creates a new credstore session and all successive new calls of the process
and its children will use this new credstore session. It is important in this case
to call exit_session at the end of the session (although currently krs and

13This API is not considered stable yet, and could be changed in the future if more functionality is
needed from it.

XtreemOS–Integrated Project 31

IST-033576 D2.3.4

uskeystore do not need it because the session will be killed anyway when the
program ends).

In the KRS implementation, this function invokes the syscall to start a new
session. In the uskeystore implementation, this functions starts a new daemon
using a fork and defines an environment variable with the address of the socket.

The function returns an environment value that the user must use with putenv,
if launching other processes within the same session. The KRS implementation re-
turns nothing, but uskeystore needs to modify the environment because new
session processes use XOS_CREDSTORE_SOCKET to locate the socket of the ses-
sion credstore daemon and to read the cookie and file handler required to authenti-
cate.

int exit_session ();
If a user program calls join_new_session, it must call this function to

end the session. In the KRS implementation this function does nothing (since
the keystore session ends when the program that started the session ends). In the
uskeystore implementation, this function kills the session credstore daemon,
but this call is not needed in Linux because join_new_session calls prctl
to establish that the credstore daemon receives a SIGTERM signal when the parent
process dies. Returns 0 on success, -1 on error.

int join_default_user_session ();
If a program changes the UID, it must call this function to change to the new

user credstore. In the KRS implementation, this function invokes the syscall to
change the keystore. In the uskeystore implementation, it launches a new
xos_credstored daemon. Returns 0 on success, -1 on error.

Caveats and known issues

If an application changes user, it must change the UID, not just the EUID, because
in KRS the UID is used to select the user keyring14. With KRS, the FSUID (File
system UID, which initially has the same value as the EUID) is used to assign
the owner of a new created entry. If the program does not need to recover root
privileges, the best solution is to change both the UID and the EUID. If the program
needs to recover root privileges, the best option is continue with EUID=0, and
change the UID with setreuid, and change the FSUID with setfsuid.

2.7.2 libxos_getcred API

This API just includes one function:
14With the uskeystore implementation, actually EUID is used to authenticate the socket in-

stead of UID, but this is transparent to developers, because the module internally swaps UID and
EUID before connecting with the daemon and restores them afterwards.

XtreemOS–Integrated Project 32

IST-033576 D2.3.4

char * xos_getcred(char *configuration_name);
This function returns a credential in PEM format. The API uses

libcredstore to implement single sign-on: if the credential is stored in the
credstore, it is automatically retrieved, but if the credstore is empty or the credential
is labelled with other configuration name different from the configuration_name
parameter, startxtreemos (or startxtreemos-m depending on the compi-
lation option which was set in the Makefile) is launched (with configuration_name
as the paremeter, if not NULL) to obtain a credential that is then saved in the cred-
store.

The configuration_name parameter can be NULL. In this case, if the
credstore is not empty, the credential is accepted without checking the configu-
ration name registered. If the credstore is empty, a new credential is stored with
configuration name “default”.

To compile an application using this library, use the -lxos_getcred com-
pilation option. The source code must include xos_getcred.h.

The xos_getdumpcred.c file is a minimalistic example application: it just
obtains the credential and shows it on the screen.

2.8 Usage: testing that everything works correctly

2.8.1 libcredstore-related tools usage

The libcredstore package also includes two executables designed to test the
implementation. They are located in ./test/test_credstore and
./test/run_credstore_session.

test_credstore This utility works in the following way:
First, it changes the configuration name to “configtest” and then retrieves the

configuration name; it should show “configtest”. Then, it stores “key value” and
invokes check_cred_is_available and
retrieve_cred, with “configtest” as the configuration name; it should show
“true” and “key value”. This test is then repeated, but using “fake” as the con-
figuration name; it should show “false”. And then, it does the same without any
configuration name; it should show “true” and “key value”. Afterwards, it deletes
the credential and invokes
check_cred_is_available and retrieve_cred; it should return “false”.
At last, it checks the timeout: first, it inserts a new value (remember that the creden-
tial was deleted in the last step) and invokes set_cred_timeoutwith a timeout
of 4 seconds; then invokes check_cred_is_available and retrieve_cred
after sleeping 2 seconds, and then after 2 additional seconds: it should show “true”,
“key value”, “false”.

XtreemOS–Integrated Project 33

IST-033576 D2.3.4

run_credstore_session is a utility that launches a shell between a call to
join_new_session and exit_session; that is, a new credstore is running
until user runs “exit”. With the uskeystore implementation, a ps will reveal
two instances of run_credstore_sesssion: the second one is the credstore
daemon.

You may check what implementation (zkrs or uskeystore) is being used
in your system. For example, invoke xos_storecred, then type “hello” and
press “Ctrl-D”. If you are using uskeystore, then ps -ax will show a
xos_credstored process which implements your credstore. If you are using
zkrs and keyutils package is installed, keyctl show should display sev-
eral entries, one of them starting with “x509uk_xos_u” and containing the cre-
dential, and another one named “xos_configname” and containing the configura-
tion name corresponding to the credential. If you repeat this test after running
run_credstore_session and your system uses uskeystore, ps -ax
will not show the xos_credstored process, but run_credstore_session
process will appear twice. The second process is the session credstore process.

2.8.2 startxtreemos-m, libxos_getcred

You may test startxtreemos-m and libxos_getcred by running
xos_getdumpcred.

First, run xos_dumpcred config1. It will not show anything, because
the credstore is empty. Now run xos_getdumpcred config1; this com-
mand will obtain the credential and show the content in the display. If we run
xos_getdumpcred again, it will now display the credential. Run xos_settimeout
5; if you run inmediatly xos_dumpcred, the credential is shown, but after 5 sec-
onds it will have been deleted. To obtain the credential again, run xos_getdumpcred
config1 or startxtreemos-m -c config1 (the only difference is that
startxtreemos-m does not show the credential, and allows to establish a time-
out in the credential). If we change the configuration (e.g. run xos_getdumpcred
default), then a new credential is loaded in the credstore that will replace the
credential obtained with the “config1” configuration.

Results are more interesting if we compile the project with the
USE_READ_PROTECTED_HELPER=1 option. In this case, group owner of
/etc/xos/creds is “startxtreemos” and only users in this group may access
this directory.
read_protected_credfile may read the contents of this directory because
it does not have the appropriate setgid attribute (“startxtreemos”). Invoking
xos_getdumpcred config1 implies that
read_protected_credfile is invoked and a dialog will ask for confirma-
tion to the user for reading the file /etc/xos/creds/config1.pem. Sub-
sequent calls to xos_getdumpcred show the credential without showing the
dialog, because credential is retrieved from the credstore. But if we delete the
credential with xos_deletecred (or use xos_settimeout to expire it), the

XtreemOS–Integrated Project 34

IST-033576 D2.3.4

next time that we invoke
xos_getdumpcred, the dialog will ask for confirmation again.

If invoking startxtreemos -c config ends with the error message:
“Sorry, you are not authorized to read credential file.”, without displaying the dia-
log, this means that there is a error in the execution of
read_protected_credfile. You may try to invoke it manually with
read_protected_credfile config1 to debug the problem.

Now we may test a credstore session, invoking
startxtreemos -c config1 && startxtreemos -c config3. The
first command loads the credential referenced by configuration “config1” in the
user credstore; the second command starts a shell and a session credstore, with the
credential assigned to configuration name “config3”. We can see the credential in
the session credstore with xos_dumpcred, by running xos_currentconfig
(it will display “config3”) and finally deleting the credential with xos_deletecred.
After we type exit, the session credstore is killed, and xos_dumpcred will
show credential “config1”.

2.8.3 startxtreemos, startxtreemos-ams

We may check startxtreemos with the same test applications as
startxtreemos-m. There are no differences in functionality, just in imple-
mentation: startxtreemos uses the PAM module while startxtreemos-m
doesn’t. If we receive an error such as “Error checking user authentication: Per-
mission denied”, that means that there is some problem in the PAM module in-
stallation; please revise the corresponding installation instructions. One visible
difference between
startxtreemos and startxtreemos-m is that the former previously veri-
fies the certificate, while startxtreemos-m just interprets the credential as a
plain text.

Finally, we may also test startxtreemos-ams. First, ensure that you pre-
viously started the xos_amsd daemon as root. Run startxtreemos-ams
-c config1; you will obtain a shell with a different UID; you may check this
with the id command. If libcredstore is using the uskeystore imple-
mentation, a xos_credstored daemon will be running with that UID, and this
daemon will continue to run after the user has closed the session. If we prefer
that this daemon does not continue running, invoke xos_deletecred or use
xos_settimeout, because the daemon dies when there is no credential to store
anymore, and it is autolaunched when the function to store a credential is invoked
(provided that the daemon is not already running).

XtreemOS–Integrated Project 35

Chapter 3

Terminal Mobility

Terminal mobility modules in XtreemOS-MD allow users to stay connected to the
grid while they are moving, maintaining the same IP address and with only mini-
mum delays when handing off between access networks. As it is explained in pre-
vious deliverables [13], this mobility can be attained by the usage of Mobile IPv6
protocols [7]. The software used in XtreemOS-MD for this purpose is an adapta-
tion for ARM architectures of the USAGI MIPv6 implementation [10], which has
been incorporated to the latest mainline Linux kernels.

3.1 System requirements

3.1.1 Hardware

Since XtreemOS-MD is designed at this stage for PDAs, it is mandatory to have an
ARM architecture PDA, equipped with a WiFi network interface.

As of this writing, tests have only been conducted on HP Ipaq hx4700 PDAs
and QEMU emulators.

3.1.2 Software

The terminal mobility modules consist of a kernel driver and a daemon run-
ning on user space. The kernel driver installation requieres to have Linux kernel
compiled enabling the following options:

• CONFIG_EXPERIMENTAL=y

• CONFIG_SYSVIPC=y

• CONFIG_PROC_FS=y

• CONFIG_NET=y

• CONFIG_INET=y

36

IST-033576 D2.3.4

• CONFIG_IPV6=y

• CONFIG_IPV6_MIP6=y

• CONFIG_XFRM=y

• CONFIG_XFRM_USER=y

• CONFIG_XFRM_SUB_POLICY=y

• CONFIG_INET6_XFRM_MODE_ROUTEOPTIMIZATION=y

• CONFIG_IPV6_TUNNEL=y

• CONFIG_IPV6_ADVANCED_ROUTER=y

• CONFIG_IPV6_MULTIPLE_TABLES=y

• CONFIG_INET6_ESP=y

• CONFIG_NET_KEY=y

• CONFIG_NET_KEY_MIGRATE=y

These options are needed just to communicate with any other MIPv6 node. If
we want our node to act as a Mobile Node (which we certainly will), more options
must be enabled too:

• CONFIG_IPV6_SUBTREES=y

• CONFIG_ARPD=y

These mobility kernel extensions are available starting from kernel version
2.6.20. In case of having an older version, kernel source must be patched in or-
der to get these capabilities.

3.2 Installation manual

The basic XtreemOS-MD version, targeted at PDAs, is based on the Ångström
distribution. To enable the aforementioned kernel extensions, it must be recom-
piled and normally a new flashable operating system image must be generated.
Ångström images are generated using OpenEmbedded [9], a development envi-
ronment that allows users to target a wide variety of embedded devices, including
Linux PDAs and mobile phones. Thus, the steps to get one of these images with a
recompiled kernel are the following:

3.2.1 OpenEmbedded installation

In order to get OpenEmbedded installed, please follow the instructions in the
Ångström website (see [2])

XtreemOS–Integrated Project 37

IST-033576 D2.3.4

3.2.2 Machine and distro selection in OpenEmbedded

Since XtreemOS-MD is still in early development stages, desktop emulation is the
best way to test it, for example using the QEMU emulator, a multi-architecture
emulator available in a number of diferent platforms, including Linux.

As OpenEmbedded is able to generate targets for multiple devices, it can be
specified QEMU as the target machine when building the operating system image,
and to specify Ångström as the Linux distribution to generate.

In order to set this options, the developer must edit local.conf file, which
is located in /OE/build/conf/ folder. The developer has to add/modify the
MACHINE value to “qemuarm” and the DISTRO value to “angstrom-2007.1”.
In case we are targeting a real device, like the Ipaq hx4700, hx4700 is the correct
value for MACHINE.

It is also mandatory, if we plan to use QEMU as the testing platform, to add the
option for ext2 filesystem images, by adding “ext2” to IMAGE_FSTYPES (space
separated).

3.2.3 Kernel modification

Kernel configuration files for OpenEmbedded are located in
org.openembedded.angstrom-2007.12-stable/packages/linux

Each target machine has assigned a specific kernel whose configuration is
in a subdirectory under this folder. For QEMU images, the assigned kernel is
linux-rp and there are several versions the user can choose from.

Each version folder has got a number of defconfig files, one for each ma-
chine that uses this kernel. Modification of this file is the way to enable or disable
kernel extensions when OpenEmbedded builds it.

For example, in order to get the mobility extensions enabled on a QEMU
Ångström version, using kernel version 2.6.23, the following file must be modi-
fied:

/OE/org.openembedded.angstrom-2007.12-stable/packages/linux/linux-rp-2.6.23/defconfig-qemuarm

Modify the lines as outlined above (see section 3.1.2), or add them if they’re
not listed.

3.2.4 OS image generation

After the modification of the kernel configuration file, the OS image must be gen-
erated.

set environment variables
source source-me.txt
#Go to the OE tree
cd /path/to/org.openembedded.stable
#Make sure it is up to date
mtn pull ; mtn update
#Start building
bitbake base-image ; bitbake console-image ; bitbake x11-image

XtreemOS–Integrated Project 38

IST-033576 D2.3.4

The generated image will be located under
build/tmp/angstrom/deploy/glibc/images/qemuarm

This image can later be used to launch Ångström under QEMU, for example,
or to be flashed onto a real PDA.

3.2.5 User tools installation

Once we have the kernel mobility extensions enabled on the kernel and the MIPv6
tools have been built, we have to copy the mip6d executable (the Mobile IPv6
daemon) to the /usr/bin folder, and give it execution permissions.

3.3 Configuration

The MIPv6 configuration file is located in /usr/local/etc. In case it is miss-
ing, it must be created, otherwise default options will be applied.

In this file, all configuration lines must be terminated with a semicolon. Sub-
sections are enclosed in brackets (“{” and “}”) and string values will be quoted
with double quotes (“”).

The following options are available:

3.3.1 Common options

NodeConfig <CN | HA | MN>; Indicates if the daemon should run in Corre-
spondent Node, Home Agent or Mobile Node modes.

Default: CN

DebugLevel <number>; Indicates the debug level of the daemon. If the value is
greater than zero, the daemon will not detach from tty (i.e. debug messages will be
printed on the controlling tty).

Default: 0

DoRouteOptimizationCN <boolean>; Indicates if a node should participate in
route optimization with a Mobile Node.

Default: enabled

NonVolatileBindingCache <boolean>; This option is currently ignored. Bind-
ing cache is always stored in volatile memory, and is not retained between shut-
down and startup

3.3.2 Options common to Home Agents and Mobile Nodes

Interface name;

XtreemOS–Integrated Project 39

IST-033576 D2.3.4

Interface name { MnIfPreference <number>; IfType <CN | HA | MN>; }
Specifies an interface and the options associated with it. If no options are present,
Interface can be terminated with a semi-colon. This is used for home agents to
specify which interfaces are used for HA operation. For the home agent to work
properly, a Router Advertisement daemon (e.g. radvd) must broadcast advertise-
ments with the Home Agent bit and Home Agent Information option set on those
interfaces. This option is also used by multihomed Mobile Nodes to define which
interfaces are used by it.

MnIfPreference sets the interface preference value for an interface in a
multi-homed Mobile Node. The most preferred intefaces have preference 1, the
second most preferred have 2, etc. A preference of zero means the interface will
not be used.

Default: 5
IfType overrides the default node behavior for this interface. If a MN doesn’t

wish to use this inteface for mobility, or a node doesn’t act as HA on this interface,
the interface type should be set to CN.

Default: same as NodeConfig

UseMnHaIPsec <boolean>; Indicates if the MN-HA MIPv6 signalling should
be protected with IPsec.

Default: enabled

KeyMngMobCapability <boolean>; If dynamic keying with MIPv6-aware IKE
is used, this options should be enabled. It turns on the K-bit for binding updates
and binding acknowledgements.

Default: disabled

IPsecPolicySet { HomeAgentAddress address; HomeAddress address/length;
IPsecPolicy } IPsecPolicySet is a set of policies to apply for match-
ing packets. A policy set can contain multiple HomeAddress options, but only one
HomeAgentAddress option. Under Home Agent configuration, the HomeAgen-
tAddress field contains its own address, and home address fields may contain any
number of mobile nodes for which the same policy applies.

IPsecPolicy has the following format:
IPsecPolicy type UseESPnumber <number>;
Field type can be one of “HomeRegBinding”, “Mh”, “MobPfxDisc”, “ICMP”,

“any”, “TunnelMh”, “TunnelHomeTesting”, or “TunnelPayload”. The “any” op-
tion protects all transport layer communication between the MN and HA. Cur-
rently, only the ESP IPsec protocol is supported, but in the future AH and IPComp
might also be available. The two remaining numeric fields are the IPsec reqid val-
ues, the first one used for MN - HA, the second one for HA - MN communication.
If just one value is defined, the same reqid will be used in both directions. If no
reqid is given, reqid will not be used.

XtreemOS–Integrated Project 40

IST-033576 D2.3.4

If more than one IPsec transport mode or tunnel mode policy is defined between
the MN and HA in each direction, reqid can be used to provide an unambiguous
one-to-one mapping between IPsec policies and SAs. Otherwise the policies will
just share a common SA.

3.3.3 Home Agent-specific option

HaMaxBindingLife <number>; Limits the maximum lifetime (in seconds) for
Mobile Node home registrations.

Default: 262140

SendMobPfxAdvs <boolean>; Controls whether home agent sends Mobile Pre-
fix Advertisements to mobile nodes in foreign networks.

SendUnsolMobPfxAdvs <boolean>; Controls whether home agent send unso-
licited Mobile Prefix Advertisements to mobile nodes in foreign networks.

MinMobPfxAdvInterval <number>; Sets a minimum interval (in seconds) for
Mobile Prefix Advertisements.

Default: 600

MaxMobPfxAdvInterval <number>; Sets a maximum interval (in seconds) for
Mobile Prefix Advertisements.

Default: 86400

BindingAclPolicy <address> <allow | deny> Defines if a MN is allowed to reg-
ister with the HA or not. The MN home address of the MN is given in the address
field.

DefaultBindingAclPolicy <allow | deny> Defines the default policy if no match-
ing BindingAclPolicy entry is found for a MN.

Default: allow

3.3.4 Mobile Node-specific options

MnMaxHaBindingLife <number>; Limits the maximum lifetime (in seconds)
for Mobile Node home registrations.

Default: 262140

MnMaxCnBindingLife <number>; Limits the maximum lifetime (in seconds)
for Mobile Node Correspondent Node registrations.

Default: 420

XtreemOS–Integrated Project 41

IST-033576 D2.3.4

MnDiscardHaParamProb <boolean>; Toggles if the Mobile Node should dis-
card ICMPv6 Parameter Problem messages from its Home Agent. As the ICMPv6
error messages will not normally be protected by IPsec, a malicious third party
can quite easily impersonate the HA to the MN. Once the MN has accepted these
messages, Denial of Service attacks are possible, even though its home registration
signalling is protected by IPsec.

Default: disabled

SendMobPfxSols <boolean>; Controls whether mobile node sends Mobile Pre-
fix Solicitations to the home network.

DoRouteOptimizationMN <boolean>; Indicates if the Mobile Node should ini-
tialize route optimization with Correspondent Nodes.

Default: enabled

MnUseAllInterfaces <enabled | disabled> Indicates if all interfaces should be
used for mobility. The preference of these interfaces is always 1. Unless you use
dynamically created and named network interfaces you should normally disable
this option and use Interface options to explicitly list the used interfaces.

Default: disabled

UseCnBuAck <boolean>; Indicates if the Acknowledge bit should be set in
Binding Updates sent to Corresponent Nodes.

Default: disabled

MnRouterProbes <number>; Indicates how many times the MN should send
Neighbor Unreachability Detection probes to its old router after receiving a Router
Advertisement from a new one. If the option is set to zero, the MN will move to
the new router straight away.

Default: 0

MnRouterProbeTimeout <decimal>; Indicates how long (in seconds) the MN
should wait for a reply during an access router Neighbor Unreachability Detection
probe. If set, it overrides any default Neighbor Solicitation Retransmit Timer value
greater than MnRouterProbe Timeout. For example, if the interface Retransmit
Timer is 1 second, but MnRouterProbeTimeout is just 0.2 seconds, the MN will
only wait 0.2 seconds for a Neighbor Advertisement before proceeding with the
handoff.

Default: 0

XtreemOS–Integrated Project 42

IST-033576 D2.3.4

OptimisticHandoff <enabled | disabled> When a Mobile Node sends a Binding
Update to the Home Agent, no Route Optimized or reverse tunneled traffic is sent
until a Binding Acknowledgement is received. When enabled, this option allows
the Mobile Node to assume that the binding was successful right after the BU has
been sent, and does not wait for a positive acknowledgement before using RO or
reverse tunneling.

Default: disabled;

MnHomeLink <name> { HomeAddress <address/length>; HomeAgentAddress
<address>; MnRoPolicy } Each MnHomeLink definition has a name. This
is the name (enclosed in double quotes) of the interface used for connecting to the
physical home link. To set up multiple Home Addresses on the Mobile Node, you
need to define multiple MnHomeLink structures. The interface names don’t have
to be unique in these definitions. All the home link specific definitions are detailed
below:

HomeAddress <address/length>; Address is an IPv6 address, and length is
the prefix length of the address, usually 64. This option must be included in a home
link definition.

HomeAgentAddress <address>; Address is the IPv6 address of the Mobile
Node’s Home Agent.

Default: ::

The route optimization policies are of the form:

MnRoPolicy <address> <boolean>; Any number of these policies may be
defined. If no policies are defined default behavior depends on the DoRouteOpti-
mizationMN option.

The fields for a route optimization policy entry are as follows: address defines
the Correspondent Node this policy applies to; if left undefined, the uspecified
address is used as a wildcard. The boolean sets route optimization either on or off
for packets matching this entry.

3.4 Command line tools

MIP6D

Although not really intended for command-line usage by humans, the MIPv6 dae-
mon has the following syntax:

mip6d -c <file> -d <level> [-C|-H|-M]

XtreemOS–Integrated Project 43

IST-033576 D2.3.4

Where:
-c <file> reads configuration from this file
-d <level> sets the debug level
-C o -correspondent-node The node is a Correspondent Node (CN)
-H o -home-agent The node is a Home Agent (HA)
-M o -mobile-node The node is a Mobile Node (MN)

3.5 Usage

Next, a sample configuration file (mip6d.conf) will be shown for both, Home Agent
and Mobile Node.

Home Agent
NodeConfig HA;

Interface "eth0";
Interface "eth1";

UseMnHaIPsec enabled;

IPsecPolicySet {
HomeAgentAddress 3ffe:2620:6:1::1;

HomeAddress 3ffe:2620:6:1::1234/64;
HomeAddress 3ffe:2620:6:1::1235/64;

IPsecPolicy HomeRegBinding UseESP;
IPsecPolicy TunnelMh UseESP;

}

Mobile Node
NodeConfig MN;

DoRouteOptimizationCN enabled;

DoRouteOptimizationMN enabled;

UseCnBuAck enabled;

MnHomeLink "eth0" {
HomeAgentAddress 3ffe:2620:6:1::1;

HomeAddress 3ffe:2620:6:1::1234/64;

address opt.
#MnRoPolicy 3ffe:2060:6:1::3 enabled;
#MnRoPolicy disabled;

}

UseMnHaIPsec enabled;

IPsecPolicySet {
HomeAgentAddress 3ffe:2620:6:1::1;

HomeAddress 3ffe:2620:6:1::1234/64;

XtreemOS–Integrated Project 44

IST-033576 D2.3.4

IPsecPolicy HomeRegBinding UseESP;
IPsecPolicy TunnelMh UseESP;

}

XtreemOS–Integrated Project 45

Chapter 4

Future work

All the features, processes and information contained in this document applies to
the XtreemOS-F software packages for mobile devices as they are released as of
this writing (May 2008). However, the development of XtreemOS-MD is an ongo-
ing work, which will progress in the near future along two main lines of develop-
ment:

• An evolutive line of development, which includes support and bugfixes for
the current release, and the improvement of current methods implemented in
this first basic version of XtreemOS-MD. These improvements will include:

– Design and development of new utilities for managing and configuring
user profiles (with regard to authentication methods for accessing the
grid), in order to make the access to the grid easier and more transpar-
ent.

– Development of a library in order to integrate XtreemOS authentica-
tion methods with existing remote shell applications like SSH/Telnet
without having to modify their code.

– Modification of libxos_getcred to integrate it transparently with
any user application, without needing to modify its code.

• Another line directed to the development of the advanced version of XtreemOS-
MD, intended to be run in mobile phones. This line comprises several ob-
jectives:

– Porting of all the existent software in the basic version of XtreemOS-
MD to the more restricted environment of a mobile phone, including
future bugfixes and new features described above.

– Integration of VO support mechanisms with Java applications.
– Evaluation of the usage of virtualization technologies to provide en-

hanced isolation between grid and mobile phone features, so that criti-
cal phone functionality cannot be affected by grid processes.

46

References

[1] The Ångström Distribution.
http://www.angstrom-distribution.org.

[2] Ångström Development page.
http://www.angstrom-distribution.org/building-angstrom.

[3] Ångström Package Repository.
http://www.angstrom-distribution.org/repo/.

[4] Fabrice Bellard. QEMU documentation.
http://fabrice.bellard.free.fr/qemu/qemu-doc.html.

[5] Official GridLab web site.
http://www.gridlab.org/.

[6] Tao Guan, Ed Zaluska, and David De Roure. A grid service infrastructure
for mobile devices. In Proceedings of the First International Conference on
Semantics, Knowledge and Grid, page 42, 2005.

[7] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. RFC 3775
(Proposed Standard), June 2004.

[8] University of Louisiana. Official WSRF.NET web site.
http://www.cs.virginia.edu/~gsw2c/wsrf.net.html.

[9] OpenEmbedded web site.
http://www.openembedded.org/.

[10] USAGI Project Homepage.
http://www.linux-ipv6.org/.

[11] XtreemOS Consortium. Design and Implementation of Node-level VO Sup-
port D2.1.2. Integrated Project, December 2007.

[12] XtreemOS Consortium. Design of a Basic Linux Version for Mobile Devices
D2.3.3. Integrated Project, December 2007.

[13] XtreemOS Consortium. Requirements and Specifications of a Basic Linux
Version for Mobile Devices D2.3.2. Integrated Project, June 2007.

47

http://www.angstrom-distribution.org
http://www.angstrom-distribution.org/building-angstrom
http://www.angstrom-distribution.org/repo/
http://fabrice.bellard.free.fr/qemu/qemu-doc.html
http://www.gridlab.org/
http://www.cs.virginia.edu/~gsw2c/wsrf.net.html
http://www.openembedded.org/
http://www.linux-ipv6.org/

Appendix A

Development environment for
XtreemOS-MD

In order to ease the development of mobile/embedded applications in XtreemOS-
MD (and of XtreemOS-MD components themselves), which is known to be costly
in terms of time and developer effort and learning curve, a special development
environment has been devised.

Here, a brief description of its current state and usage is given. However, it is
still an ongoing work, and more features will be added to it as the project evolves.

A.1 The environment

Currently, the develpment environment for XtreemOS-MD consists of an ARM
architecture emulator (namely, QEMU-ARM), which the developer uses to edit,
build and execute the source code, as if working on a real PDA. This emulated
machine works mainly with two disk partitions (stored in files in the host machine),
one for the kernel and another one for the root filesystem. This latter one contains
the files from an Ångström Linux distro (the distro which XteeemOS-MD for PDAs
is based upon).

A rough schema of the environment is showed in the following figure:

48

IST-033576 D2.3.4

The usage of virtual environments like VMWare to follow this manual is dis-
couraged in terms of speed, as one would be developing in an emulator inside an-
other emulator. Other kinds of environments like chroot could be used, since they
do not put such a penalty on efficiency, and could serve to isolate this environment
from the host.

A.2 Generating a development environment

Although already-made development environments are normally available from
the SVN repository of the project (both for GUI interfaces and for console-mode
interfaces), here we will describe how to generate one such environment.

In order to generate a XtreemOS-MD machine fit for development, a special
image must be generated, with much more root filesystem space to let development
tools work with freedom, and to store object files and other by-products of typical
development. XtreemOS-MD user images usually have a size of 64 or 128 MB
(the same amount that a typical device normally has for flash ROM). In this case,
as XtreemOS-MD development will be done in a QEMU environment, more space
is available from the host system and thus, developers can make use of it.

The process for generating such an image is the following:

A.2.1 Generating a bigger image

Modify the file

/OE/org.openembedded.angstrom-2007.12-stable/conf/machine/include/qemu.inc

in your OpenEmbedded installation and change the value of
IMAGE_ROOTFS_SIZE_ext2 to the desired size in bytes. It’s recommended to
use a size above 512 MB (524288).

A.2.2 Regenerating the OS image

Following the installation instructions shown in the Terminal Mobility chapter
(chapter 3), we must use OpenEmbedded to get a new image with the new size,
launching the image generation process as explained there.

Once the image is generated, it can be launched with the QEMU emulator, as
described on its user manual [4]. For development images, it is recommended to
use emulator memory values of 248MB and above.

A.2.3 Connecting to XtreemOS-MD via SSH

By default, XtreemOS-MD has a SSH server running on startup, so it will probably
be easier to connect to the virtual machine through SSH from now on (specially if
we plan to make extensive use of command line tools). Of course, network must

XtreemOS–Integrated Project 49

IST-033576 D2.3.4

be set up adequately to redirect the emulator’s SSH port to a determined port in the
host system.

Then, we can initiate a SSH session from the host or any other machine:

ssh [-l <user>] [-p <port>] <IP-angstrom>
su
(insert XtreemOS root password)
ipkg update

This last command updates the software package list with the latest informa-
tion from the online repositories. From now on, if the network connection is con-
figured correctly, we will have at our disposal a wide variety of packages, that
can be installed through the ipkg utility, in a similar way as apt-get works in
Debian/Ubuntu.

A.2.4 Installing the compiler tools

To install the development packages, type in your emulator:

ipkg install binutils gcc libc6-dev gcc-symlinks \
binutils-symlinks autoconf automake perl-module-file-path \
make coreutils

If you wish to know which other packages are available, you can query Ångström’s
package repository [3].

Also, you can search for packages from inside Ångström with ipkg:

ipkg list
ipkg list | grep <string>

or, to see the installed packages:

ipkg list installed

In case the DNS of the emulated machine gets unconfigured, we will have to
edit /etc/resolv.conf manually and add the following:

nameserver <DNS>

XtreemOS–Integrated Project 50

