
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Linux-XOS for MD/MP
D2.3.7

Due date of deliverable: November 30th, 2009
Actual submission date: December 10th, 2009

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP2.3
Task number: T2.3.7

Responsible institution: Telefónica I+D
Editor & and editor’s address: Santiago Prieto

Telefónica I+D
Parque Tecnológico de Boecillo

47151 Boecillo (Valladolid)
SPAIN

Version 0.5 / Last edited by Santiago Prieto / December 10th, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 14/10/09 Telefónica I+D Telefónica
I+D

Document created

0.2 02/11/09 Telefónica I+D Telefónica
I+D

Intermediate version

0.3 26/11/09 Telefónica I+D Telefónica
I+D

Ready for internal review

0.4 4/12/09 Telefónica I+D Telefónica
I+D

Draft version after first internal review

0.5 10/12/09 Telefónica I+D Telefónica
I+D

Final version

Reviewers:
Massimo Coppola (CNR), Toni Cortés (BSC)

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T2.3.7 Implementation of an advanced Linux version for mobile de-
vices (Linux-XOS for MD/MP)

TID∗, INRIA

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary

After having released the first version of XtreemOS-MD software, available for
Maemo-based PDAs like the Nokia N8x0 series, this deliverable presents the work
done on the implementation of the advanced XtreemOS-MD Foundation layer (F-
layer). This work has been organized into the following branches:

• On one side, as there is a new release of XtreemOS including several new
features, we have updated the XtreemOS-MD F-layer to be compatible with
them. This means additional enhancements regarding security and VO sup-
port.

• Several enhancements in the configuration and installation process have been
implemented, taking into account the experience with XtreemOS-MD re-
lease 1.0. That includes also a tool to ease the manual configuration of the
system (everything was automatic in release 1.0, very convenient for end
users, but closed the door to later modifications on the configuration).

• As detected during the design phase, it would be useful to have knowledge
of some context parameters related to mobile devices, like the remaining
battery, GPS status and position, network connectivity, etc. These kind of
parameters could be used for example to determine if the device status may
be considered as “online” or “offline” for concrete services. The specific use
of the context information is left to other parts of the software (G-layer for
instance), but the support to provide context awareness information have al-
ready been included in the Foundation layer, which this document is focused
on.

• One of the most important modifications from the previous XtreemOS-MD
release to this advanced version is the inclusion of the resource sharing mod-
ule into the mobile device. This resource sharing module, analyzed in de-
liverable D2.3.6 [11] is implemented partially on the F layer, concretely for
giving support to G layer to implement services like data sharing, or to open
the possibility to share the input/output and network devices.

• Finally, this new implementation of the XtreemOS-MD F-layer has been
adapted to be supported not only by PDAs, but also by smartphones. Fol-
lowing the criteria to prioritize the smartphone platforms supported identi-
fied in deliverable D2.3.6 [11], we have initially worked on the support of the
Neo FreeRunner terminal. But the software is portable to other Linux-based
platforms and that could be done by the XtreemOS’ developers community.

Contents

Glossary 5

1 Introduction 6
1.1 Document structure . 6

2 VO management and security 8
2.1 Security enhancements . 8

2.1.1 User interface enhancements for security 8
2.1.2 Credential modules and cryptography 9

2.2 VO Management from MDs . 9

3 Resource sharing 11
3.1 Introduction . 11

3.1.1 Security and Network Model 11
3.1.2 Daemon Responsibilities 14

3.2 General architecture . 14
3.2.1 How RSD works . 16
3.2.2 Use case analysis: user shares a new resource 19
3.2.3 Use case analysis: a remote client accesses a resource shared

by the mobile device . 19
3.3 API definition . 21

3.3.1 User interface library . 21
3.3.2 Module programmer’s reference 21

3.4 Implementation . 22
3.4.1 Data sharing foundation code 22
3.4.2 Network sharing foundation code 23
3.4.3 GPS sharing foundation code 23

3.5 Configuration, installation and use 23
3.5.1 Resource Sharing User Configuration 23
3.5.2 Installation and Usage 24

4 Context awareness 25
4.1 Introduction . 25
4.2 General Architecture . 25

1

IST-033576 D2.3.7

4.3 API definition . 26
4.3.1 getLevelBattery . 27
4.3.2 getNetworkAccess . 27
4.3.3 getGPSPosition . 27
4.3.4 startGPSTrace . 29
4.3.5 startGPSTrace . 29
4.3.6 stopGPSTrace . 29
4.3.7 getGPSTrace . 30
4.3.8 getProfile . 30
4.3.9 getStatus . 30

4.4 Implementation . 31
4.4.1 Battery information . 31
4.4.2 Network information . 32
4.4.3 Current GPS information 32
4.4.4 Mobile Status information 35

4.5 Installation and Usage . 36
4.5.1 Installation . 36
4.5.2 Usage example . 36

5 Installation, configuration and additional features 38
5.1 Installation enhancements . 38
5.2 Configuration enhancements . 38
5.3 On-demand starting enhancements 40
5.4 Service resuming . 41
5.5 Transparent access to Grid resources 41
5.6 XtreemOS-MD ported to netbooks 42

6 Conclusions and Future work 43

References 44

XtreemOS–Integrated Project 2

List of Figures

1.1 XtreemOS-MD general architecture 7

3.1 Resource sharing architecture . 15
3.2 RSD starting sequence . 17
3.3 sharing a resource use case . 19
3.4 Accessing a resource use case 20

4.1 General architecture . 26
4.2 getBatteryLevel operation . 31
4.3 getGPSposition operation . 33
4.4 getGPSTraces operation . 34
4.5 getProfile operation . 35

5.1 Configuration tool: editing window 39
5.2 Configuration tool: selecting configuration window 40

3

List of Tables

4.1 Context Awareness API operations 27
4.2 return code for NetworkAccess 28
4.3 return code for Status . 31

4

Glossary

ARM Advanced RISC Machine

API Application Programming Interface

CN Common Name

EGID Effective Group Identifier

EUID Effective User Identifier

GID Group Identifier

GPS Global Positioning System

MD Mobile Device

PAM Pluggable Authentication Modules

PDA Personal Digital Assistants

RSD Resource Sharing Daemon

SSH Secure Shell

SSL Secure Socket Layer

TCP Transport Control Protocol

TLS Transport Layer Security

UID User Identifier

UUI Universally Unique Identifier

VO Virtual Organization

WP Work Package

XtreemOS-MD XtreemOS for Mobile Devices

5

Chapter 1

Introduction

This document presents the implementation of the advanced version of XtreemOS-
MD Foundation layer (F-layer). This advanced version, respect to the the first
version previously released, includes support for smartphones, like the OpenMoko
platform (and its model Neo FreeNunner) and also includes additional features re-
garding VO management and security. The software could also be ported by 3rd

parties to other Linux-based mobile device platforms (LiMo, Android, etc.) as al-
ready stated in [11], where a deep analysis on the current Linux-based platforms
where made: “we are ensuring that XtreemOS-MD advanced version will be avail-
able for dissemination to the developers community and thus we are leveraging the
adoption of XtreemOS-MD to more OS and device manufacturers, which are the
key players for a success story of XtreemOS as a whole”.

In addition, this version provides support for a new advanced feature that al-
lows sharing of mobile device resources to the Grid, thus converting the mobile
device from a Grid client into a special Grid resource. For this purpose, the context
awareness module has been completed and the resource sharing module designed
in D2.3.6 has been partially implemented (as part of the implementation of this
module also belongs to the services layer and will be implemented by WP3.6).

Finally, some improvements in the installation and configuration process have
been implemented, so that keeping the ease achieved by the basic version, it would
be still possible to modify the initial configuration. A graphical tool designed
specifically for this purpose allows the user to select the adequate configuration.

For a better comprehension, we recommend to review the XtreemOS-MD ar-
chitecture, described in detail in [11] and [10], and shown in figure 1.1 for conve-
nience.

1.1 Document structure

The document is structured as follows:
Chapter 2 deals with the new features concerning VO management and secu-

rity, from the use of the new VOLife web interface, to the new credential modules

6

IST-033576 D2.3.7

Figure 1.1: XtreemOS-MD general architecture

provided. In chapter 3 the implementation and the API of the new module for
resource sharing is explained, at least the part that corresponds to layer F, as this
module is part of F and G layers. Then, chapter 4 is focused on the implementation
of the context awareness support, and the API offered to upper levels to access to
the context information (mode, GPS, etc.).

Next, chapter 5 details the implemented enhancements concerning installation
and configuration, and the new graphical tool provided to select a concrete con-
figuration, useful for end-users as well. Finally, chapter 6 outlines the conclusions
and next steps to achieve a final version of the whole Xtreemos-MD software (in-
cluding both F and G layers).

XtreemOS–Integrated Project 7

Chapter 2

VO management and security

XtreemOS-MD F-layer basic version already provided a rich security infrastruc-
ture to support a secure access to the Grid, implementing a modular, pluggable
SSO solution, which allowed users forgetting about credential administration. VO
Management through VOLife web interface was also supported by the basic ver-
sion.

In this advanced version, apart from the smartphone support for every func-
tionality, some new features have been included concerning VO management and
security aspects.

2.1 Security enhancements

2.1.1 User interface enhancements for security

User interface enhancements take into account the interface limitations inherent
to mobile devices, such as the lack of a physical keyboard in some cases or at
least their lack of comfortability. This means that entering a long password for
authenticating the user could be a not-so-easy task. To overcome this limitations
we have implemented the following enhancements:

• PIN-based authentication: We have included a PIN-based authentication sys-
tem, where the mobile device user will just need to introduce a PIN, a short
number, that will be sent to the CDAProxy. The CDAProxy keeps a table
matching user+PIN with the corresponding full password in the Grid, which
will be used to continue with the authentication process. Additionally, the
CDAProxy manages a system to limit the number of failed access tries (the
table that matches PINs and passwords also provides a field for storing the
number of consecutive PIN entry errors). After the third one, the PIN is in-
validated and the user needs to introduce the full password from his mobile
device in order to get authenticated in the Grid. To obtain a new PIN, the
user will need to contact the administrator.

8

IST-033576 D2.3.7

• Bluetooth pairing support: As an alternative, we are also developing a solu-
tion for an authentication process based on Bluetooth pairing. This is useful
when a Bluetooth enabled PC runs a CDAProxy and a mobile device es-
tablishes a bluetooth pairing with it. With the appropriate modifications to
the CDAProxy this condition may be detected and then, just by establishing
a Bluetooth connection with the PC, the CDAProxy will consider authenti-
cated the user and it will launch the authentication process into the Grid. Of
course, this is useful for devices located under the bluetooth distance range.
However, the pairing is only necessary when establishing the session. In or-
der to implement this feature, the CDAProxy shall support PAM modules.
As this is an ongoing development for the CDAProxy at G-layer (being car-
ried out by WP3.6), this feature will not be available until the release of the
G-layer software.

2.1.2 Credential modules and cryptography

The basic version of XtreemOS-MD already provided a modular architecture for
the authentication process. This architecture was based on two different types of
modules: credagent modules, to obtain the credential, and creduiagent modules, to
interact with the user when needed (to request a password for example).

In this new advanced version, we have implemented new credagent and cre-
duiagent modules. With this new modules, a password may be requested to the
user by other means (e.g. Blueotooth pairing or any other type of delegated authen-
tication), acting like a kind of remote creduiagent module. Furthermore, it would
be possible to implement parental control solutions. Among the solutions consid-
ered during the design phase, the implementation of the new credagent/creduiagent
modules has been based on the use of libcurl libray.

On the other hand, it has also been provided an access control by group to the
credential store (more concretely to the libcredstore library), so that just designated
applications will be allowed to gain access to the credstore. To implement this
access control, an additional method has been included in the libcredstore
library, in order to deny the access to non-members of a special group:

int (*protect_credstore)();

If this function is invoked, the credstore daemon will deny the access to pro-
cesses with a EGID different to its own. This function does not return any direct
result. It only returns a status code to inform whether the method worked properly
(value 0) or generated an internal error (value -1).

2.2 VO Management from MDs

The redesigned VO management Web interfaces [12] (the VO Web Frontend inter-
face offered by XVOMS, and the RCAWeb Frontend interface to the RCA Server)

XtreemOS–Integrated Project 9

IST-033576 D2.3.7

are still supported by the target mobile devices, and concretely by smartphones
with even more limitations regarding screen size and resolution compared to the
PDAs. No additional implementation work is needed for VO management from
MDs.

XtreemOS–Integrated Project 10

Chapter 3

Resource sharing

3.1 Introduction

Resource sharing in mobile devices is one of the biggest challenges of XtreemOS-
MD advanced implementation. Resource sharing services will be implemented in
the G layer, but the F layer provides a common foundation for all these services
through a daemon, the Resource Sharing Daemon (RSD), and a modular architec-
ture.

This layer also provides the functionality for detecting the moment when files
are moved to a shared directory, which will be used by the data sharing service.

3.1.1 Security and Network Model

In XtreemOS PC flavor, just the nodes with a valid RCA certificate can share re-
sources. This policy is not acceptable with XtreemOS-MD, as RCA certificates
guarantee that the machine is a trusted node and mobile devices are normally not
trusted nodes. Therefore, in XtreemOS-MD resource sharing, only CDA certifi-
cates are used. When interacting with services that are designed to run in trusted
nodes (e.g. XtreemFS), XtreemOS-MD will use a proxy software running in a
trusted node. This proxy software will authenticate XtreemOS-MD node using its
CDA credential and will guarantee to other nodes that the mobile device doesn’t
break the VO security. For example, in data sharing service, a proxy will guarantee
that the mobile device doesn’t impersonate other users.

As RSD needs access to user credentials, invocation of libxos_getcred is needed.
The daemon is invoked automatically when startxtreemos is successfully started.

It’s worth noting that RSD is designed for mobile devices, which are personal,
mono-user devices. In a multiuser device, the configuration tools runs as root just
for controlling system settings, while the configuration tools for user preferences
runs with the identity of the user. However, when there is only one user account,
it’s more secure to consider the user preferences as system settings, and to protect
these preferences in files which are not writable by the user. This is for example
the security model of Maemo.

11

IST-033576 D2.3.7

Resource sharing implies that a service running in mobile devices must respond
to requests from clients of the VO. Two models are possible:

1. There is a proxy running in a trusted node; clients connect to this proxy and
the proxy redirects the request to the corresponding mobile device node.

2. Clients connects directly to mobile device node.

The first model has been selected as it presents some advantages:

• As the proxy runs in a trusted resource, it is much more secure.

• It is more friendly with NAT, network or software interruptions and IP ad-
dress changes. This is because mobile devices may establish a persistent
connection with the proxy to receive the requests, instead of creating a listen
socket, that requires to open a port and a static (or at least stable) IP address.

• It implies less resources in mobile device side: it is not necessary to authen-
ticate each request nor establish a connection per request.

• It allows integration with the Grid delegation mechanism (currently being
designed), as the authentication could be done against a trusted node using
xos-ssh.

• It guarantees anonymity between client requesting the service and node pro-
viding it.

• It allows integration with Grid services like accounting for instance.

Theoretically, the second model presents the advantage that a central server
is not required. However, direct connection does not prevent the need of a central
server, because some kind of service is needed to search nodes conforming to client
request. If clients connect directly to a specific IP address instead of searching
suitable nodes for a specific need, this would be a client-server architecture and not
a Grid one.

3.1.1.1 Use of SSH-XOS

There are several methods to establish a secure channel between a resource sharing
service and the proxy running in a trusted node.

A well known option is based on the creation of a TLS connection using the
CDA credential as authenticator. One advantage of TLS is the session caching: the
handshake is avoided when a new connection is established, even if the client IP
address changes.

Another option is based on the use of SSH-XOS. The main advantage presented
is that this solution is used in other parts of XtreemOS (e.g. AEM) and a new SSO
based on SSH-XOS is also expected for the final version. SSH-XOS is based in
OpenSSH, which provides “Control Master“, a mechanism that allows creating

XtreemOS–Integrated Project 12

IST-033576 D2.3.7

new channels inside an already established SSH connection. Another strength of
SSH is that it implements port-forwarding, a mechanism to support multiple in-
coming connections in a scenario with NAT, using only one outgoing connection
and not needing to open input ports in the intermediate router.

SSH-XOS uses libxos_getcred to obtain the credential. This means that the
resource sharing is somehow integrated with the XtreemOS-MD SSO. Just one
connection is needed to provide the resource sharing and if this connection is bro-
ken, it is restarted without disturbing the user as the credential is cached in the
credstore.

The general idea is the creation of a pair of TCP redirections between the
trusted node where the proxy runs and the mobile device where the resource shar-
ing daemon runs:

• One redirection goes from the proxy to the mobile devices. The proxy con-
nects with the mobile device when a request to a shared resource arrives (e.g.
another user reads a file shared by the mobile device). This port redirection
is created with OpenSSH -R option.

• The other redirection goes from mobile devices to the proxy. The mobile
device connects to the proxy when there is a change related to the resource
availability (e.g. when a new file is shared). This second port redirection is
created with OpenSSH -L option.

When each part connects to the redirected server port, it first writes a shared
cookie for authentication. Even if the use of local ports prevents from unauthorized
remote connections, this step is required to avoid connections to a local server from
any local process. The cookies are generated using uuidgen with -r option, so
that the UUID are generated with 122 random bits, enough to avoid collisions [8].

3.1.1.2 Ports allocation

There is a problem when creating a redirection with OpenSSH -R option: a port
in the proxy node must be previously reserved, because the command will fail if
the port is already in use. Each supported mobile device needs a different port,
therefore, static allocation is not an option. To solve this problem, the proxy node
runs the xos_register_port utility, which firstly allocates a free port (using listen
with an unbound socket and getsockname to discover the port number) and then
releases the obtained port to make it available once again before returning the port
number to the mobile device.

Note that a rare race condition may occur if the port is allocated by other pro-
cess after the utility releases the port but before SSH redirection is created. To avoid
this, xos_register_port creates an internal connection to the port and closes the con-
nection before releasing the port. This way, the socket will be in TIME_WAIT state
for several seconds, not being available so immediately.

XtreemOS–Integrated Project 13

IST-033576 D2.3.7

When the SSH connections ends, the ports are released and recycled automat-
ically by the kernel and they become available again after the TIME_WAIT timer
expires.

The xos_register_port utility is responsible for storing the port in a database as
well. This database is used by the proxy to know how to contact the user’s mobile
device.

3.1.2 Daemon Responsibilities

RSD provides the following features:

• Establishment of a secure, authenticated connection to create bidirectional
channels between the remote proxy and the mobile sharing service. RSD
will reconnect if the connection is lost. For temporal unavailabilities, it will
wait until a D-BUS notification related with the connection availability is
received.

• For each incoming proxy request from the proxy, the RSD will invoke the
associated service and will pass the open socket to it. This way, the dae-
mon makes the resource sharing service development easier: services are
implemented as inetd servers and resource sharing daemon may run services
as isolated, with the requested EUID and EGID, according to the manifest
included in the module package.

• Enforcement of user preferences concerning incoming requests’ approval:
automatic approval, notification to the user or request user authorization.

• The RSD is in charge of guaranteeing that just the services desired by the
user are running. Each module must include a declaration about the infor-
mation that is shared and its implications: users can check this information
and enable or disable the module accordingly to their preferences.

• Enforcement of user preferences concerning service availability and context
awareness. For example, users may establish that resource sharing service
will be disabled while network connection is 3G or GPRS and enabled if it
is free Wifi. Others context criteria are availability and battery status.

• The RSD will restart a resource sharing module that terminates unexpect-
edly.

3.2 General architecture

The general architecture of resource sharing is shown in figure 3.1.
RSD provides the infrastructure for sharing services through a modular archi-

tecture. For each resource sharing service, RSD interacts with two components:

XtreemOS–Integrated Project 14

IST-033576 D2.3.7

Figure 3.1: Resource sharing architecture

XtreemOS–Integrated Project 15

IST-033576 D2.3.7

1. the inetd service, which is invoked when a request arrives from proxy to port
A: the proxy really connects with its local port B, that is redirected by SSH
to mobile node port A.

2. the sharing module, which is invoked when the RSD starts if the user has en-
abled it. This module is responsible for the proxy interaction when resource
sharing configuration changes (e.g. a user shares a new file). This module
interacts with the proxy through a connection to local port D, which in turn
is redirected to proxy’s node C using the SSH tunnel.

RSD uses SSH-XOS to obtain port B and register it in the port database used
by the proxy. The port database stores two types of information:

1. CN and machine-id. This information is indexed by cookie. The proxy
queries for this record when a new request from a sharing module running in
a mobile device arrives.

2. Port and cookie information. This information is indexed by the CN (Com-
mon Name) of the user, machine ID and the name of the service. The proxy
queries for this record when it needs to know how to connect with the sharing
service running in the mobile device. Xos_register_port queries this record
before creating a new entry to delete the old CN register indexed by cookie.

Machine-id is just a string to distinguish among several devices of the same
user. That is, this ID must be unique only at user level. It’s the equivalent of
”resource“ string in XMPP addresses [3].

Port database also stores the last modified date for each record, used for peri-
odical removal of unused entries (e.g. users not already active). Port database is
implemented using Berkeley DB.

For simplicity, the diagram shows just one proxy and one sharing service, the
architecture supports multiple proxies and services (e.g. a file sharing service and
a network sharing service).

3.2.1 How RSD works

The Resource Sharing Daemon is launched automatically by startxtreemos if the
credential configuration file includes a start_resource_sharing parameter in the
[general] section but it may be launched manually also. When started, it first
scans the sharing modules under /usr/share/xos/sharingservices folder and checks
the configuration files in /etc/xos/sharingservices/ to know which modules are en-
abled.

RSD uses XOS-SSH to communicate with servers running in a trusted node
and accepts service requests from them. Multiple channels are embedded in only
one authenticated connection with the node, using the OpenSSH Control Master
mechanism.

XtreemOS–Integrated Project 16

IST-033576 D2.3.7

Figure 3.2: RSD starting sequence

XtreemOS–Integrated Project 17

IST-033576 D2.3.7

The RSD starting process is described in figure 3.2. These are the involved
steps:

1. RSD uses SSH-XOS to run xos_register_port in the trusted node where the
proxy runs. The device generates a cookie (using uuidgen) and passes it to
xos_register_port together with the service name and a machine-id.

2. xos_register_port gets CN from user, invoking getpwuid(getuid()).

3. xos_register_port queries the database by CN, machine-id and service name,
to obtain port and cookie. Then it uses the cookie to remove the old entry
indexed by cookie.

4. xos_register_port allocates a port that is not in use. This port (named B
in diagram) will be used by the proxy to connect with the sharing service
running in the mobile device. Then, it frees the port in TIME_WAIT state to
be available for SSH redirection.

5. xos_register_port stores in the port database the CN and machine-id using
the cookie as key. It also stores the port and cookie using the service name,
the CN and the machine-id as key. The last entry is used for communications
from the proxy to the sharing service in the mobile device; the former is used
for communications from the mobile device to the proxy.

6. xos_register_port returns the allocated port B to RSD.

7. RSD allocates a local port A bound to 127.0.0.1 IP address (that is, this server
in 127.0.0.1:A is not directly accessible from network without a redirector).

8. RSD creates a redirection from port B in the remote node to local port A,
using SSH-XOS -R option. This implies that when the proxy running in a
trusted node connects to its local B port, the connection is redirected through
a SSH secure channel to the mobile device service port A.

9. RSD finds a free local port D

10. RSD uses -L option of SSH-XOS to create a redirection from local port D
to the remote port C. Proxy server listens in port C the connections from
mobile devices (this connections are used for example to inform that a new
resource is shared).

11. RSD starts the local sharing module and passes to it the port D and the
cookie.

A configuration tool is provided to allow users enabling and disabling services.
This set-euid tool modifies the configuration file under /etc/xos/sharingservices and
notifies the resource sharing daemon using SIGHUP signal. The daemon reloads
then the configuration and starts and stops services accordingly. The configuration

XtreemOS–Integrated Project 18

IST-033576 D2.3.7

tool reads a manifest about the module in /usr/lib/xos/sharingservices with infor-
mation that will help the user to decide whether enabling or disabling the module.

The configuration tool is also used to configure the specific parameters of each
service (e.g. the folder to share in data sharing). This task is delegated in a config-
uration module that must go with the sharing module.

3.2.2 Use case analysis: user shares a new resource

Figure 3.3 shows the communication between the different involved parts when a
user shares a new resource (e.g. a file):

Figure 3.3: sharing a resource use case

1. The client publishes a new resource as available (e.g. a photograph is saved
in shared directory). Another example is that a user authorizes now to share
its network connection.

2. The sharing module reacts to the user event contacting the proxy. It uses
a local port that is redirected by SSH-XOS to the proxy port. When the
connection is established, the first data written is the cookie.

3. The proxy module reads the cookie and queries the port database to obtain
the CN and machine-id.

4. The sharing module sends the updated information about resource sharing
and the proxy uses it to update its information (e.g. service discovery).

3.2.3 Use case analysis: a remote client accesses a resource shared by
the mobile device

Figure 3.4 shows the involved communication when a remote client requests access
to a resource (e.g. a file).

XtreemOS–Integrated Project 19

IST-033576 D2.3.7

Figure 3.4: Accessing a resource use case

1. The remote client connects with the proxy and sends the request.

2. The proxy determines the CN and machine-id of the mobile device where a
suitable resource that satisfies the request is available; then it queries the port
database by CN, machine-id and service name (the proxy name) to obtain the
port to connect with the service and the cookie to authenticate.

3. the proxy connects with the service using a local port, which is redirected by
SSH-XOS to the mobile device service. the proxy writes first the cookie and
then the request (of course the request sent by the proxy may be different
that the request received from client).

4. The Resource Sharing Daemon, listening to the port, receives the proxy re-
quest; it only accepts it if the cookie is correct. Then, it checks if the service
is enabled according to the configuration (e.g. verify battery level) and asks
the user for approval (if no automatic confirmation is set). Then, it does a
fork, invokes close(0), close(1), dup(sock), dup(sock) to
redirect the socket to standard input/output and exec the inetd-like service.

5. The inetd-like service runs the needed code to provide the service, and sends
the response back to the proxy.

6. The proxy processes the reply from service, and sends the response to the
client.

It is possible that the RSD or inetd-like service rejects the request or even that
the proxy cannot connect to the obtained proxy because the mobile device is not

XtreemOS–Integrated Project 20

IST-033576 D2.3.7

connected any longer. In that cases, the proxy will try with a different node which
also fits the request (if any).

3.3 API definition

3.3.1 User interface library

RSD may need to interact with the user (e.g. to notify when a new request arrives).
User interface code is isolated in library libxos_sharing_gui.so to make it more
easy to port. This library implements the following interface:

void show_error_message(char *message);
void show_message(char *message);
void notify_new_request(char *message);
int confirm_new_request(char *message);

The third function is used to notify that a new request has arrived and the last
one is used to inform that a new request has arrived and to wait for the user’s
confirmation: the call returns 0 if the user authorizes the request, -1 otherwise.

3.3.2 Module programmer’s reference

The inetd-like service is implemented as a program that uses the standard input to
read the data from proxy and the standard output to write data to proxy.

A sharing module is implemented as a shared object that implements this
method:

void start(int port,char *cookie,int restarted);

where

• Port parameter is the TCP port to use to connect with proxy.

• Cookie parameter is the string to write to authenticate with proxy.

• restarted parameter is a flag that is 0 when module is started normally,
1 when module is started after it unexpectedly ends.

The module receives the SIGTERM signal if the user disables the module while
it is running and SIGHUP signal if the configuration is changed and the module
must be reloaded.

To terminate, the module uses exit(0); otherwise the RDS will try to restart it
automatically.

If the service needs a specific configuration, a second module must be provided
to interact with the user and change the configuration file. The module name should
be the same than the service module, but with “.gui” suffix (e.g. if the service mod-
ule is file gpssharing.so, the configuration module file must be gpssharing.gui.so).
The module must implement only this function:

XtreemOS–Integrated Project 21

IST-033576 D2.3.7

int run_ui_config();

This function returns 0 if the configuration changed and the service module
must reload the configuration or -1 if the configuration is finally unchanged.

3.3.2.1 Module manifest

Each service module provides a manifest file (a file with the name of the service
and “.inf” as extension) with the following information:

• Description: the service description to be displayed to the user.

• Considerations: human-readable text with any security, privacy or perfor-
mance degradation implications of the service.

• euid-inetd : the required EUID to run the inetd-like service.

• egid-inetd : the required EGID to run the inetd-like service.

• euid-module: the required EUID to run the sharing module.

• euid-module: the required EGID to run the sharing module.

3.4 Implementation

3.4.1 Data sharing foundation code

Data sharing service needs a mechanism to detect when the user wants to share
a new file. A good point is that if user chooses to mark a folder as shared, then
each new file added to the directory will be shared. This is similar to NFS and
SMB behavior, but with XtreemFS advantages: file will be replicated automatically
while it is accessed.

How to detect that a new file is added to the shared folder? Neither a periodic
polling, nor a manual synchronization are good solutions. A better one is based on
using inotify kernel support.

A library (libxos_notifydirchange.so) using inotify to detect when a file cre-
ated in the shared folder is closed after a write operation is provided. This library
changes the file-mode to read-only (currently replica mechanism of XtreemFS re-
quires it) and notifies the event to layer G. It also detects when a file is moved or
removed from the shared folder, to act consequently. The only function provided
is:

void shared_directory_changed(const char *dir,
void (*callback(char *,int)));

XtreemOS–Integrated Project 22

IST-033576 D2.3.7

Parameter dir is the path of the shared folder to monitor. The second argument
is a pointer function to the callback that is invoked when a change in the shared
folder is detected. The first parameter of this callback function is the full path of
the file and the second indicates if a new file is shared (value 1) or removed (value
0). This function never returns.

3.4.2 Network sharing foundation code

There is no specific foundation support in F layer for network sharing. Code will
be implemented in layer G.

3.4.3 GPS sharing foundation code

Base functionality to module is provided through context-awareness API, which is
described in chapter 4.

3.5 Configuration, installation and use

3.5.1 Resource Sharing User Configuration

The Resource Sharing Daemon reads a configuration file for each module in
/etc/xos/sharingservices/<servicename>.conf

Users has full control about what resource sharing services are running, using
section availability. Users also have control about the approval or notification when
a new request client arrives, using section approval.

Configuration file example:

[availability]
enable=true
disable_if_not_wifi=false
disable_if_battery_less_than=0
#disable_if_status_is=

[approval]
ask_request_approval=false;
notify_new_request=false;

Other service specific sections may appear as well.
The following algorithm is checked to decide if module is started:

1. If enable is false, the module is not started.

2. If disable_if_not_wifi is true and the network connectivity is not through
WiFi (e.g. mobile is connected using UMTS or GPRS), the module is not
started.

XtreemOS–Integrated Project 23

IST-033576 D2.3.7

3. If disable_if_battery_less_than is defined and not 0, and battery level is un-
der that percentage, the module is not started.

4. If disable_if_status_is is defined and user status matches one of the comma-
separed values of the parameter, the module is not started; otherwise, the
module is started.

The following algorithm is used when a new request for a sharing service ar-
rives:

1. If ask_request_approval is true, a user’s confirmation is required when a new
request arrive; the request will be rejected if the user doesn’t authorize it.

2. If notify_new_request is true and ask_request_approval is false, the user will
be notified that a new request arrived, but manual approval won’t be needed.

3.5.2 Installation and Usage

Resource sharing daemon has the following dependencies:

• glib2

• libdbus (optional, but required for receiving asynchronous notifications)

• lidb

• SSH-XOS (client only). This program requires OpenSSL >= 0.9.8g.

Actually, users don’t need the installation instructions. The binaries will be
installed automatically (together with the corresponding layer G software), like the
other components of XtreemOS-MD.

XtreemOS–Integrated Project 24

Chapter 4

Context awareness

4.1 Introduction

First of all, let’s consider the special characteristics that distinguish mobile de-
vices from other devices (PC’s, clusters) such as: limited battery autonomy, more
probability of network connection losses and possibility of suffering changes on
IP address. The minor computational power and minor storage capacity of mo-
bile devices will not be considered as important differences in this section, be-
cause XtreemOS-MD allows compensating these disadvantages getting the compu-
tational power and the storage capability of the Grid through AEM and XtreemFS.

Also, the high possibility of location changes is another differential factor when
thinking on mobile devices.

This particularities of mobile devices are taken into account by XtreemOS-MD
to achieve a complete integration with the XtreemOS architecture.

Following these design premises, XtreemOS-MD will permit users to exploit all
features and services provided by XtreemOS obviating the mobile device disadvan-
tages (battery, connection,...) and taking advantage of mobility capability among
others.

The main task of this Application Programming Interface (API) [11], is to permit
to 3rd applications (Grid services) to decide to change the operation mode depend-
ing on the mobile device context, e.g.: if the percentage of the battery is under
10%, the mobile device will automatically disconnect from the Grid.

4.2 General Architecture

The API for Context Awareness has been designed and developed as a set of
functions belonging to a static C library called libCONTEXT.a. This type of
standard implementation allows an easy porting of the API implementation to dif-
ferent platforms: Maemo [6], Openmoko[7], etc.

25

IST-033576 D2.3.7

This API offers context information of the mobile focusing on battery, network
connection and GPS position. But the information offered could be extended with
new features just by writing new functions and integrating them in the library pro-
vided. The XtreemOS-MD target devices offer the D-BUS [2] system, which is
a message bus system used by applications and libraries to communicate with a
different one, using a simple inter-process communication (IPC).

To get the context information, the implementation of the library uses the D-BUS
interfaces to communicate with the Hardware Abstraction Layer [5] (HAL).

The architecture schema for API Context Awareness is shown in the figure 4.1.

Figure 4.1: General architecture

The libCONTEXT library invokes the appropriated method of the D-BUS in-
terface depending on the required type of information, and gets the information as
a D-BUS message. When the libCONTEXT receives the message, it processes the
message and formats its content following the Context Awareness API description.
Finally, the library sends the required information to the application (Grid service).

4.3 API definition

This section contains a detailed description of the Context Awareness API includ-
ing operations, parameters, operations results and status codes returned. All en-
abled operations of the Context Awareness API are summarized in the table 4.1.

XtreemOS–Integrated Project 26

IST-033576 D2.3.7

Name Parameters Result
getLevelBattery - (string) batteryData

getNetworkAccess - (int) networkType
getGPSPosition - (string) positionData
startGPSTrace - (int) statusCode
startGPSTrace period (int) statusCode
stopGPSTrace - (int)statusCode
getGPSTrace - (string) collectionPositions

getProfile - (string) profile
getStatus - (int) mobile status

Table 4.1: Context Awareness API operations

4.3.1 getLevelBattery

Permits 3rd applications to get the current battery level of the device in percentage
%.

Parameters

None

Result

The method returns a string with the value in percentage of the current battery
level.

4.3.2 getNetworkAccess

Permits 3rd applications to get the type of network that is active and used by the
device to connect to the network.

Parameters

None

Result

The method returns an integer number with a value that indicates the type of
primary connection being used as specified in Table 4.2.

4.3.3 getGPSPosition

This method returns the current date and GPS position of the mobile device.

Parameters

XtreemOS–Integrated Project 27

IST-033576 D2.3.7

connection return value
no connection 0

WiFi 1
USB networking 2

3G 3

Table 4.2: return code for NetworkAccess

None

Result

The method provides the current date and GPS position in a string with a well-
known format:

YYYY MM DD; HH MM SS; HHH MM.M LongHemisphere; HHH MM.M

LatHemisphere

Where:

• YYYY MM DD

Current date with four-digit numbers for years, followed by months and
days.

• HH MM SS

Current time with numbers for hours, followed by minutes and seconds.

• HHH MM.M

HHH represents hours and MM.M represents minutes for latitude/longitude.

• LongHemisphere
This word indicates if the longitude is measuring a distance east or west of
the Prime Meridian. A value of "E" indicates east and "W" indicates west.

• LatHemisphere
This word indicates if the latitude is measuring a distance north or south of
the equator. A value of "N" indicates north and "S" indicates south.

XtreemOS–Integrated Project 28

IST-033576 D2.3.7

4.3.4 startGPSTrace

When a 3rd application invokes this method, the Context Awareness library gets
the GPS position each 2 minutes and saves it in a log file. The format used is
similar to the one defined in the previous section.

Parameters

None

Result

This method does not return any direct result, but the GPS information is saved in a
log file. It only returns a status code in order to inform whether the method worked
properly (value 0) or generated an internal error (value -1).

4.3.5 startGPSTrace

When a 3rd application invokes this method, the Context Awareness library sam-
ples the GPS position according to the period parameter and saves the samples
in a log file. The format used is similar to the one defined at the previous section.

Parameters

period: Value in minutes for the time period between two consecutive requests for
GPS positions.

Result

This method does not return any direct result, but the GPS information is saved in a
log file. It only returns a status code in order to inform whether the method worked
properly (value 0) or generated an internal error (value -1).

4.3.6 stopGPSTrace

This method of the API must be invoked after invoking the startGPSTrace
method. This method stops the process of saving GPS positions.

Parameters

None

Result

This method does not return any direct result. It only returns a status code in order
to inform whether the method worked properly (value 0) or generated an internal
error (value -1).

XtreemOS–Integrated Project 29

IST-033576 D2.3.7

4.3.7 getGPSTrace

This function returns the sampled GPS positions of the device that were saved in a
log files since the startGPSTrace was invoked until this time.

Parameters None

Result

The function provides the saved dates and GPS positions, ordered by date, in files
of strings with a well-known format (for more information check: ??)

4.3.8 getProfile

Permits 3rd applications to get the current status or active profile of the device. For
example: silent, vibrate, meeting, normal, etc.

Parameters

None

Result

The function returns a string with the name of the current status or active profile of
the device:

• Default

• Vibrate

• Ring

• Silent

4.3.9 getStatus

Permits 3rd applications to get the status (offline / online) of the device to decide if
a Grid Service can be invoked or not.

Parameters

None

Result

The possible responses of this method is shown in the table 4.3

XtreemOS–Integrated Project 30

IST-033576 D2.3.7

Status return value
offline 0
online 1

Table 4.3: return code for Status

4.4 Implementation

This section includes a detailed description of the implementation in the different
functions of the Context Awareness API for OpenMoko and Nokia N8x0.

4.4.1 Battery information

OpenMoko implementation

The information about the current battery level of the device is provided by
the D-BUS interfaces with a specific method: org.freesmartphone.Device.
PowerControl.GetPower, so the libCONTEXT invokes this method to get
the info, and processes the returned data generating a string with the remaining
percentage of battery. The process is shown in the figure 4.2

Figure 4.2: getBatteryLevel operation

Nokia implementation

XtreemOS–Integrated Project 31

IST-033576 D2.3.7

The implementation for Maemo devices follows the same schema as Open-
Moko, but invoking a different D-BUS method to get the battery information, in
this case: org.freedesktop.Hal.devices.bme.battery
.charge_level.percentage. Moreover, the processing and response for-
matting are different but the response of the libCONTEXT to the applications is
similar to the Openmoko implementation.

4.4.2 Network information

OpenMoko implementation

The information about the type of network used by the device to connect
to the network is not available using the OpenMoko D-BUS interface. So the
libCONTEXT implementation must use another way to get the information: Open-
Moko distribution keeps the status of their different network interfaces in a text file
at /sys/class/net/ directory with different values: "down", "up" and "dor-
mant". The method, in charge of returning the type of connection, inspects the
status value of the different networks and detects which one is used to connect to
the network. If various interfaces are active, the method will decide among them,
following this precedence order: Wifi, USB-networking, GPRS, and 3G.

Nokia implementation

The responsible for network connectivity in the Nokia N8x0 devices is the
Internet Connectivity daemon (ICD2)[9]. To get network information for the Con-
text Awareness API, libCONTEXT uses the internal D-Bus API com.nokia
.icd2.addrinfo_req to connect to ICD2 and get the type of network con-
nection used in the device.

4.4.3 Current GPS information

The current GPS position of the device is returned by getGPSPosition() function.
The implementation of this function in libCONTEXT gets the GPS position using
the utility GPSpipe, which belongs to gps-utils [4] package of the Open-
Moko repository. GPS Information is stored in a binary file at /etc directory of
the device, GPSpipe reads the date and position information provided and shows
it via standard output (in this case the device display). The module that implements
the Context Awareness API invokes the GPSpipe utility collecting the response
with the date and position information. This information is formatted following
the Context Awareness API rules and it is returned as a string of characters.

To avoid problems with the device, the first step for this process is to check the
status (off/on) of the GPS device. If the GPS module is off-line, an error code will

XtreemOS–Integrated Project 32

IST-033576 D2.3.7

be returned by the function and the process finalizes immediately, aborting the GPS
consult. The process is shown in the figure 4.3

Figure 4.3: getGPSposition operation

Tracing GPS information

The Context Awareness API permits 3rd applications to keep the GPS date and
position during a period of time and return this information to the 3rd applica-
tion. When the startGPSTrace function is invoked, libCONTEXT implemen-
tation launches a program, in an independent thread, whose mission is to invoke
the GPSpipe to get the GPS information and to keep the information in a regular
file. The operation is repeated each period (by default 2 minutes). The time pe-
riod is defined as a parameter of the function. While the API is keeping the GPS
information, it can attend any other request given that the process is running in an
independent thread.

When the stopGPSTrace() function is invoked the thread, which is keeping
the GPS information, is stopped. And when the getGPSTrace() is invoked,
libCONTEXT reads the file containing the GPS traces (stored with the correct
format for this API) and returns them as a string of characters. The complete
process of getting GPS traces is shown in the figure 4.4

Profiles information

XtreemOS–Integrated Project 33

IST-033576 D2.3.7

Figure 4.4: getGPSTraces operation

XtreemOS–Integrated Project 34

IST-033576 D2.3.7

Figure 4.5: getProfile operation

The active profile is selected by the user device and the D-BUS interface of
OpenMoko allows consulting it when the method org.freesmartphone.de
vice.PowerControl.getPower is invoked. So, the API implementation
invokes it and gets the name of the active profile as a string that is returned by the
getProfile() function. The complete process of getting the profile name is
shown in the figure 4.5

4.4.4 Mobile Status information

The method getStatus, in order to generate a response (online or offline), con-
sults other Context Awareness API methods getting information of battery, network
connection and profile (if available). With this information, it generates a response
taking into consideration the rules defined in a configuration file with the following
format:

#Context Awareness configuration File
batteryLevelMin 30

#network
wifi TRUE
usb FALSE
3G FALSE
bluetooth TRUE

XtreemOS–Integrated Project 35

IST-033576 D2.3.7

Just the network connections marked as TRUE in the configuration file will be
enabled for the Grid services, but only when the remaining battery percentage is
higher than the batteryLevelMin parameter indicated. For example, in the
example shown, the online mode will be assumed while the remaining battery is
higher than 30% and there are WiFi or Bluetooth connectivity, but the MD will
work in offline mode in the rest of cases.

4.5 Installation and Usage

4.5.1 Installation

The implementation of the Context Awareness API is created and delivered in
the form of an static library (libCONTEXT.a) which will be offered with the
XtreemOS-MD version as a deb or ipk package for Maemo/Openmoko respec-
tively, although it is possible to install the API implementation manually, executing
the following commands:

• Openmoko devices:

#dpkg -i libcontext-1.0.deb

• Openmoko devices:

#opkg install libcontext-1.0.ipk

This command installs and configures the library in the system.

4.5.2 Usage example

The following source code exemplifies the use of this Context Awareness API from
a 3RD mobile device application:

#include <stdio.h>
#include <stdlib.h>

int main(){

//battery level
char *statusBattery = NULL;
statusBattery = getLevelBattery();

//network info
char *statusNetwork = NULL;
statusNetwork = getNetworkAccess();

XtreemOS–Integrated Project 36

IST-033576 D2.3.7

//GPS

//current GPS position
char *CurrentGPS = NULL;
CurrentGPS = getGPSPosition();

//Starting GPS traces service
startGPSTrace();

//to get several GPS traces
sleep(60);

//Stopping GPS traces service
stopGPSTrace();

//Getting GPS traces service
char *pathTraces = NULL;
pathTraces=getTraceGPS();

return 0;

}

XtreemOS–Integrated Project 37

Chapter 5

Installation, configuration and
additional features

5.1 Installation enhancements

XtreemOS-MD basic version was already very easy to install and almost plug-
and-play: username was the only parameter required during the installation. For
this advanced version we have included some additional features, with the main
objective of reaching a full unattended installation whenever possible:

• XtreemOS-MD advanced version allows a better granularity in installation,
so that it’s possible to install separately the AEM and XtreemFS modules if
only one of them is needed.

• XtreemOS-MD could be installed as a dependency of an application. This
way, when installing the JobMA application for example, XtreemOS-MD
will be automatically installed in the system. As usual, the Grid’s username
will be requested during the installations, as it’s needed by the XtreemOS-
MD installer.

5.2 Configuration enhancements

XtreemOS-basic version was not only easy to install, but also it was fully config-
ured automatically during the installation process. The administrators or service
providers were in charge of setting the needed configuration in a single file in-
cluded in the installation. XtreemOS-MD advanced version offers additionally the
possibility of editing the configuration without gaining root privileges in the sys-
tem. A very simple GUI is provided, allowing the users to modify, in a very simple
and intuitive way, the default settings like Grid user, IP addresses of the XATICA
and XtreemFS servers, etc, as shown in figure 5.1. Anyway, the GUI for configura-
tion could also be limited (or even not provided within a concrete XtreemOS-MD
distribution) in order to keep the classical behavior of the XtreemOS-MD basic

38

IST-033576 D2.3.7

version, which could be interesting to implement parental control, or let the ser-
vice provider keep a full control over the configuration, or simply to avoid the
possibility that malicious applications could the configuration.

Figure 5.1: Configuration tool: editing window

This graphical interface also allows the support of multiple configurations, so
that the users can manage several different configuration and select the active one
each time, as shown in figure 5.2. The implementation is done just by creating the
default one as a virtual link of the configuration selected each time.

On the other hand, XtreemOS-MD manages automatically the credential acqui-
sition process, so that users don’t need to worry about getting manually the creden-
tial from the CDA. This behavior provided by the basic version is very convenient,
but there are special circumstances under which some additional actions could be
needed (like expired credentials, or not desired cached credential for example).
This advanced version offers the following features to cope with this situations:

• Automatic renewal of expired credentials: startxtreemos sets a timeout
in the credstore to disable the expired credentials. This implies a process of
credential automatic renewal, taking into account that startxtreemos is
invoked when the credstore is empty, obtaining a new credential from the
CDA server.

• A new function xos_purgecred in libxos_getcred library that will
force the removal of cached credentials and consequently the request of a
new one. This could be useful when an application detects an invalid cached
credential, like for example when the credential has been revoked. This new
function implies in turn a new one (xos_credagent_purgecred)in

XtreemOS–Integrated Project 39

IST-033576 D2.3.7

Figure 5.2: Configuration tool: selecting configuration window

libxos_credagent library that will search the module associated to the
credential, requesting its removal if cached. Also the credagent modules
where it make sense, will implement a credagent_purgecred method
to remove the cached credentials.

The API offered by libxos_getcred is:

void xos_purgecred(char *credencial);

but as libxos_getcred is setgid “credagent”, like startxtreemos utility, only
libxos_credagent has access to it, and then the API is offered by the latter:

void xos_credagent_purgecred(char *configuration);

Finally, while the basic version supported the mounting of just one volume at
the same time, XtreemOS-MD advanced version support as well the configuration
of multiple volumes to be mounted when starting the connection to the Grid. This
has been implemented through a simple modification of starxtreemos, which
is able to mount several volumes configured instead of just one.

5.3 On-demand starting enhancements

The startxtreemos console application was already provided by the XtreemOS-
MD basic version, but in this advanced version, as commented in the previous sec-
tion, it has also been included a graphical interface to select the configuration to
apply. With this GUI it’s also possible to launch startxtreemos graphically
just by selecting one of the available configurations offered (see 5.2).

Startxtreemos was as well automatically launched when using applica-
tions linked with libxos_getcred library or in systems where the open calls

XtreemOS–Integrated Project 40

IST-033576 D2.3.7

were overwritten using the LD_PRELOAD mechanism. During the design phase of
the advanced version, two new alternatives were identified:

• a first one based on a FUSE pseudo filesystem.

• a second alternative based on a wrapper to libxos_getcred through a
D-BUS service, so that libxos_getcredwould also be available for pro-
grams written in non-C languages as Python or Java.

It has been decided to implement the first one, and then in this advanced ver-
sion we are providing four virtual files to read the credential, certificate, key and
configuration names using a FUSE-based pseudo file-system that makes use of
libxos_getcred.

5.4 Service resuming

Mobile devices environment might be less stable than the desktop one. For exam-
ple, network connection may be lost for a time and it is possible that after recovery
the device will get a different IP address. This is problematic with software that
establishes a persistent connection, or when the other side of the communication
does not expect an IP address change. Another problem with mobile devices is
that, sometimes, the processes are killed if the device is getting out of memory.

Manual restarting of applications or services is not a good option for mobile
device users. For this reason, some critical processes are launched with a wrapper,
which guarantees that the process will be restarted if it ends unexpectedly.

The implemented wrapper is xos_launcher. This software does a fork to
exec the program, while the main process will wait until the child ends. Then,
xos_launcher will evaluate the exit status of the process: if it detects an abnor-
mal termination, the launcher will relaunch the process and will wait again, but it
the software ended with a successful state, the launcher will invoke exit(0).

Of course, xos_launcher does not relaunch repeatedly the process when it
fails. The following algorithm is applied:

• if the process ends at first run immediately (the precise meaning of "immedi-
ately" is a configurable number of seconds), it is considered a configuration
problem and the launcher ends with a error state

• if the process ends two times in the last minute, process relaunched is de-
layed a configurable time which is specified as a parameter in xos_launcher
invocation.

5.5 Transparent access to Grid resources

XtreemOS provides transparent access to file resources through XtreemFS FUSE
module, but applications like xsub or JobMA are needed to launch jobs in the

XtreemOS–Integrated Project 41

IST-033576 D2.3.7

Grid. In order to gain transparency and improve the execution of jobs in the Grid,
XtreemOS-MD advanced version offers the possibility of executing directly JSDL
files to launch the jobs described inside those files, without the need of using ex-
plicitly any other application to open the JSDL files. This way, if a JSDL file
containing the definition of a job is available, the user will just execute this file
(for example with a classical double click or any other mechanism used by the
terminal’s file manager to execute a program) and the job will be launched to the
Grid.

In order to implement this feature we have made use of the binfmt_misc
mechanism provided by the Linux kernel (used for example to run directly the Java
class files), so that a specific interpreter of the code is executed to “translate” it to
something executable by the operating system. In this case, the interpreter consist
of a program that reads the JSDL file and pass it as an argument to xsub.sh
command, that is then executed to run the corresponding job in the Grid.

5.6 XtreemOS-MD ported to netbooks

The basic version of XtreemOS-MD was only available for Maemo devices and
Angstrom [1] over QEMU. Even if the advanced version supports as well ARM
architectures (quite common in mobile phones), it was already suggested to migrate
XtreemeOS-MD to netbooks based on x86 architecture. During the design phase,
and after a careful analysis (see [11] for the details), it was decided to select Ubuntu
as the GNU/Linux distribution for netbooks. Given that porting only the F-layer
now does not provide Grid services for end-users, we have decided to wait for
the final implementation of the G-layer and make a full porting of XtreemOS-MD
software then.

XtreemOS–Integrated Project 42

Chapter 6

Conclusions and Future work

All the features, processes and information contained in this document apply to the
implementation of the advanced XtreemOS F-layer carried out for mobile devices,
including VO support, context awareness API and resource sharing features, apart
from the installation and configuration enhancements. This advanced version of
XtreemOS-MD F-layer is now available for PDAs based on Maemo platform and
also for smartphones based on OpenMoko platform.

It should be noted that there is an ongoing design and implementation of the
Grid services for mobile devices (G-layer), which will make use of the context
awareness and resource sharing APIs offered by layer F, and which will be ready
before the end of the project. This means that the final packaging of the XtreemOS-
MD advanced F-layer version, that includes all the features detailed in this deliver-
able, will be available along with the packaging of the advanced G-layer just after
the corresponding integration with the future last release of XtreemOS. During this
intermediate phase before the final release, and after the integration of F and G
layers, a testing phase including bug fixing will be carried out.

Finally, as explained in section 5.6, the porting to Ubuntu distribution for net-
books will be delayed until the final release of the whole XtreemOS-MD software
is available.

43

References

[1] The Ångström Distribution.
http://www.angstrom-distribution.org.

[2] DBUS Homepage.
http://www.freedesktop.org/wiki/Software/dbus/.

[3] P. Saint-Andre et al. Extensible messaging and presence protocol (xmpp):
Core. Technical Report, RFC 3920, Internet Task Force, October 2004.

[4] Neo FreeRunner Homepage.
http://wiki.openmoko.org/wiki/Neo_FreeRunner_GPS/.

[5] Hardware Abstraction Layer Homepage.
http://www.freedesktop.org/wiki/Software/hal/.

[6] Maemo Homepage.
http://maemo.org/.

[7] OpenMoko Homepage.
http://wiki.openmoko.org/wiki/Main_Page/.

[8] UUID Wikipedia page.
http://en.wikipedia.org/wiki/UUID#Random_UUID_

probability_of_duplicates/.

[9] Internet Connectivity daemon version 2 Homepage.
http://maemo.org/api_refs/5.0/beta/icd2/index.html/.

[10] XtreemOS Consortium. Design of advanced services for mobile devices
D3.6.5. Integrated Project, December 2009.

[11] XtreemOS Consortium. Design of an advanced Linux version for mobile
devices, D2.3.6. Integrated Project, October 2009.

[12] XtreemOS Consortium. Fourth Specification, Design and Architecture of the
Security and VO Management Services D3.5.13. Integrated Project, 2009.

44

http://www.angstrom-distribution.org
http://www.freedesktop.org/wiki/Software/dbus/
http://wiki.openmoko.org/wiki/Neo_FreeRunner_GPS/
http://www.freedesktop.org/wiki/Software/hal/
http://maemo.org/
http://wiki.openmoko.org/wiki/Main_Page/
http://en.wikipedia.org/wiki/UUID#Random_UUID_probability_of_duplicates/
http://en.wikipedia.org/wiki/UUID#Random_UUID_probability_of_duplicates/
http://maemo.org/api_refs/5.0/beta/icd2/index.html/

	Glossary
	Introduction
	Document structure

	VO management and security
	Security enhancements
	User interface enhancements for security
	Credential modules and cryptography

	VO Management from MDs

	Resource sharing
	Introduction
	Security and Network Model
	Daemon Responsibilities

	General architecture
	How RSD works
	Use case analysis: user shares a new resource
	Use case analysis: a remote client accesses a resource shared by the mobile device

	API definition
	User interface library
	Module programmer's reference

	Implementation
	Data sharing foundation code
	Network sharing foundation code
	GPS sharing foundation code

	Configuration, installation and use
	Resource Sharing User Configuration
	Installation and Usage

	Context awareness
	Introduction
	General Architecture
	API definition
	getLevelBattery
	getNetworkAccess
	getGPSPosition
	startGPSTrace
	startGPSTrace
	stopGPSTrace
	getGPSTrace
	getProfile
	getStatus

	Implementation
	Battery information
	Network information
	Current GPS information
	Mobile Status information

	Installation and Usage
	Installation
	Usage example

	Installation, configuration and additional features
	Installation enhancements
	Configuration enhancements
	On-demand starting enhancements
	Service resuming
	Transparent access to Grid resources
	XtreemOS-MD ported to netbooks

	Conclusions and Future work
	References

