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Executive summary

In this document we recap the overall structure of the Service/Resource Discovery
System (SRDS). The SRDS software module, developed by CNR, acts as a front-
end of the highly scalable services toward the rest of the XtreemOS system, and
implementing Resource Discovery and the Application Directory Services. The
Resource Selection Service (RSS), a specialized P2P overlay developed by VUA,
is a core component of the system, targeting highly scalable resource location.
Previous development of the whole SRDS distributed service is documented in
deliverables D3.2.4 and D.3.2.8.

After briefly surveying the overall structure of the SRDS and of the RSS, we
discuss in detail the improvements and changes of these modules that were per-
formed until PM40, leading to the reference implementation for the XtreemOS
revision 2.1. Both the SRDS and RSS modules have been extended and reworked
in order to satisfy more stringent requirements of (1) reliability (2) performance
(3) usability in the real system.

Concerning the SRDS, this deliverable discusses the changes in the software
architecture in Section 2.1, which address improved network fault tolerance, ex-
tended configurability, stronger checking of system interaction. The new SRDS
monitoring interface, improving system management in-the-large, is discussed in
2.2. New mechanisms and semantics of queries for resource location, casted as
extensions to the JSDL XML dialect, are discussed in Section 2.3 and 2.4, lead-
ing to a tighter integration of the SRDS with the rest of the XtreemOS system.
Performance evaluation of the changed functionalities of the SRDS prototype is
reported in Section 2.5, concerning the AEM and JDS services used in resource
discovery and management. The test results confirm that the overall SRDS system
is scalable to large networks.

The RSS research was focused on the dynamic management and tuning of the
overlay’s parameters. To address these aspects, we have designed a set of exten-
sions to the current RSS protocols and tested them through simulation. One goal
is to be able to change the set of nodes’ attributes at runtime (thus restructuring the
overlay), without having to restart the RSS daemons. The discussion, analysis and
experimental evaluation of this first feature are reported in Section 3.1, and lead us
to conclude that the cost of updating the RSS network related to the attribute set
change is low enough to allow the system to reconfigure while running. Building
on top of this flexibility, a self-management procedure is also developed, allowing
to tune the RSS overlay automatically at run-time. Details, a behavioural model
and its evaluation based on extensive testing are presented in Section 3.2, which
allow us to start the integration of the new features within the XtreemOS system,
increasing its flexibility and efficiency.
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1 Introduction
The Service/Resource Discovery System (SRDS) is the main tool used in XtreemOS
to locate resources and services over a large platform without incurring in scala-
bility and reliability issues. As the platform size grows, the SRDS services have
to overcome the effects of scale in term of access latencies, resilience to faults and
to node churn. For this reason, the SRDS has been structured since the beginning
as a set of interoperating P2P networks, which by their very nature exhibit high
scalability and fault tolerance. The work involved in the developing of such a dis-
tributed service has lead to the results already documented in deliverables D3.2.4
and D.3.2.8.

In this document we recap the overall structure of the SRDS, a software mod-
ule developed by CNR to act as a front-end of the highly scalable services toward
the rest of the XtreemOS system, and of its core component the Resource Selec-
tion Service (RSS), a specialized P2P overlay developed by VUA, targeting highly
scalable resource location.

The document is structured into two main sections, namely Section 2 concern-
ing the SRDS and Section 3 discussing the RSS, where we describe the improve-
ments made to these XtreemOS modules until project month 40.

Both modules have been extended and reworked in order to satisfy more strin-
gent requirements of reliability and usability in the real system. Concerning the
SRDS, this deliverable discusses the changes in the software architecture in Sec-
tion 2.1, its monitoring interface in 2.2, improvements to the resource query func-
tionalities in Section 2.3 and 2.4, and performance evaluation of the module in
Section 2.5.

The RSS has undergone a deep evolution, with the introduction of manual,
on-line reconfiguration capability to change the set the attributes and parameters
of the overlay network without having to restart it. The discussion, analysis and
experimental evaluation of this first feature are reported in Section 3.1. Building
on top of this feature, a Self-management procedure is also developed, allowing to
tune the RSS overlay automatically at run-time. Details, a model and its evaluation
based on extensive testing are presented in Section 3.2.
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2 SRDS
The SRDS is a complex module tying together a number of separate overlays,
which cooperate in providing a set of highly available and scalable services through-
out the XtreemOS platform. Its architecture and functionalities have been dis-
cussed in detail in project deliverables D3.2.4 and D3.2.8 [19, 4].

SRDS Architectural Overview The architecture shown in Figure 1 is deployed
on each physical node of the system (core and resource nodes). As all compu-
tational nodes within an XtreemOS system are at the same time part of more
different overlays, which differ in their characteristics and provided functionali-
ties, the upper layer of the SW architecture of Figure 1 provides a set of common
interfaces (Facades) to the SRDS services. Local and remote XtreemOS compo-
nents that need to access the information stored in those overlays will access these
interfaces, which can be customised and whose use can be restricted to a single
XtreemOS module.

An intermediate SW layer (comprising Generic Information Providers and
Query/Provide Modules) provides common information management and query
processing capabilities.

The lower layer in the figure wraps the interfaces of different overlay net-
work implementations into a common abstraction, and provides the ability for
each XtreemOS machine to start up new overlays, and to join existing ones.

All sub-modules managing specific overlays at the lowermost level in the
SRDS architecture currently are variations on the basic Distributed Hash Table
(DHT) paradigm, with the important exception of the RSS overlay. The RSS and
the OverlayWeaver P2P overlays have a primary role in the process of resource
selection, thus the integration with RSS is tighter and less generic, but more op-
timized from the functional and performance viewpoints. It is important here to
remind that the SRDS is capable of dealing with resources which have both static-
valued attributes, that is attributes whose value does not change for the life of the
resource itself, and dynamic-valued attributes, whose value is free to change at
any moment, and will likely change quite often as the platform is used (e.g. the
node load and free memory). We will simply distinguish resource attributes into
static and dynamic, where no ambiguity can arise.

The combination of the RSS approach (designed to deal with static attributes
and to be fast and highly scalable in the overlay size) and the DHT approach of
SRDS (less scalable, but suited and optimized to deal with dynamic attributes,
and thus capable to refine the query result taking dynamic values into account)
provides flexible and scalable resource location services within XtreemOS. In the
SRDS architecture shown, the RSS overlay is queries for resources first, and its
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Figure 1: Overall software architecture of the SRDS, including the RSS, deployed
on each node of the XtreemOS system.

answer is refined by filtering out nodes whose dynamic attributes do not match
the constraints expressed in the query (a “machete and bistoury” metaphor).

Recent changes to the SRDS design During the last year, a significant ef-
fort has been made to increase both the performance and the flexibility of use
of the SRDS. The first part of this deliverable lists the improvements related to
the SRDS code developed and maintained by CNR. The SRDS code interfaces
with the DIXI/XATI communication framework for the management of dynamic
resource information and various directory-like services like for instance the Ap-
plication Directory Service. In order to provide such heterogeneous services, the
SRDS coordinates and exploits three different overlay networks (RSS, Scalaris,
OverlayWeaver).

The remaining part of this section will summarize the different improvements
made, with respect to

• increased usability and ease of SRDS configuration

• robustness of code and of integration within XtreemOS

• scalable performance of SRDS provided services, with respect to overlay
size and system load.
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Section 2.1 describes changes introduced in SRDS architecture with the re-
lease 2.0 of XtreemOS. Most changes are related to increasing the reliability
and upgrade-ability of SRDS. Section 2.1.1 describes the improvements in fault-
tolerance with respect to network connectivity, Section 2.1.3 regards increased
configurability, and Section 2.1.4 concerns the introduction of new XML valida-
tion points for the JSDL and GLUE data. Some changes were aimed at providing
new functionalities, like the improved query layer described in Section 2.1.2.

Section 2.2 describes an addition to the user interface, the new Web interface
introduced to check the status of the DHTs that SRDS exploits.

Section 2.3 describes the extensions made to the JSDL XML format to im-
prove its expressiveness, addressing the issue of providing a dynamic semantics
for JSDL elements either already existing or not described by the JSDL standard.

Section 2.4 presents the new functionality of neighbourhood query for Vivaldi
coordinates.

Finally, section 2.5 reports performance tests, made on Grid5000 platform,
regarding functionalities that SRDS provides to Job Directory Services and Ap-
plication Execution Management

2.1 SRDS Architectural Changes
2.1.1 Increasing P2P Overlays Reliability

While two of the overlay networks exploited by the SRDS are developed within
the XtreemOS project (namely Scalaris and RSS) and are hence tested for scalabil-
ity and reliability over XtreemOS by their own developers, the third P2P network,
OverlayWeaver, is a commodity P2P implementation.

OverlayWeaver (OW) [22] is a Java P2P and DHT framework which is used
by SRDS mainly as a support for the Discovery System. OW integration with
SRDS has been described in previous projects deliverables. It is a project policy
to test library upgrades before accepting them in the main repository.

In the release 2.0 of XtreemOS we upgraded OW, moving from 0.8.9 to release
0.9.7, in order to addresses an issue of TCP socket pollution issue, due to OW
not properly releasing used sockets, that caused network port congestion after
several days of XtreemOS uptime. A fault tolerant join routine has been added
to the code of the SRDS on top of the OW functionalities, to avoid that delays or
disconnections at boot time prevent the overlays from correctly forming.

What happened with the plain OW routine was that a node, failing to con-
nect to the bootstrap node, went on and created a single-node overlay all by itself.
The SRDS release 0.3.0 has been added an exception catch and retry mechanism,
which activates whenever OW detects that the current node is not connected to
the overlay bootstrap node as reported in the SRDS configuration. It is now pos-
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sible to exploit multiple-bootstrap-nodes overlay configurations (each OW peer is
potentially a bootstrap) without the risk of partitioning the overlay.

2.1.2 Generalized Query Layer

The Query Engine used to support the ADS queries on top of DHT networks
has been extended and made more general, by allowing the user to choose a
concurrency-reliable data management when needed, which in turn relies on the
properties of the Scalaris transactional DHT.

The introduction of a general query layer improves the extendability of the
ADS, by easing the integration of new services, and allows to separate DHT
namespace usage (typically a series of put/get operations on DHT) from DHT
namespace management (creation, deletion and storing of namespaces).

The typical situation the query layer addresses is that of a client (e.g. the
Job Directory Service) providing structured data (job descriptions) and eventually
issuing queries to retrieve data records. The queries are based on some attributes
of the stored data (e.g. the Job id).

The new query layer manages all the data provided by its client as single re-
source. A resource is defined as a list of attribute-value pairs. As an example, if
the data represent a job the attributes may be the “jobID”, the “userID” associated
with that job, as well as the version of the job.

The Qprovide layer provides an API to XtreemOS services for accessing the
underlying DHTs. The API must match different services, hence different opera-
tions and attributes. To achieve this flexibility we defined a resource specification
that handles three different classes of resource attributes, with different manage-
ment requirements.

• The ID attribute identifies the resource, thus we assume it has an unique
value and a resource must have only a ID attribute. The ID attribute is used
to directly retrieve the single resource associated with it (direct query).

• The remaining attributes are divided into strict and free attributes. There
is a sharp distinction between them: strict attributes are mandatory in each
resource submitted (each client, beside the ID attribute, will describe all
the strict attributes at service initialization). Strict attributes can be used in
queries to retrieve a list of resources matching a particular attribute value.

• Free attributes are unrestricted, and still memorized with the resource de-
scription, but no efficient way is provided to query a resource from the
values of its free attributes. Free attributes are not searchable and can be
retrieved only with a direct query.
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Figure 2: UML diagram representing the Java implementation classes of the
eu.xtreemos.ads.qengine package.
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In principle a resource may contain any number of strict attributes. In practice,
the service should keep this number as low as possible to increase the overall
performances, as each strict attribute S requires an auxiliary data structure within
the DHTs in order to allow reverse queries on that attribute. Maintaining this
auxiliary information is costly, since a list (or other data structure) of all IDs that
contain a specific value of S must be managed at the location of that value within
the DHT. For example, in the JDS client implementation, the userID is a strict
attribute, so that it is possible to retrieve a list of the jobID resources which share
a given userID (i.e. all the jobs of a user).

Two different implementations of the Query Layer have been developed, a
low-overhead one which suffices for the AEM and JDS needs, and a concurrency-
aware one that enforces data coherence by exploiting a transactional DHT where
appropriate.

In order to enforce the consistency of data, it’s worth to point out that the
simpler implementation does not need to use Scalaris, but

• it is not concurrent-safe for several different client instances to modify the
values of attributes defined as strict,

• it is possible, but not concurrent-safe to delete a resource by its ID.

That is, the simplest version currently supports only one writing client and one
reading client at time, which is enough for the AEM/JDS service needs, where
jobs are handed by a single instance of the AEM at a time. Conversely, the more
general implementation of the Query layer can enforce distributed consistency
by employing transactions when updating linked data structures, and properly re-
executing the transaction if the distributed state of the system has changed.

Two new Java classes called QProvider and QProviderTransacional have been
created, which implement the operations described above, respectively without
and using the transactional support. The class ResourceInfo represent the re-
source. All these classes are contained into eu.xtreemos.ads.qengine package.
Figure 2 shows the UML diagram for these classes.

2.1.3 Configuring the SRDS Dynamic Data Monitoring Function

The dynamic data monitor is a process of the SRDS that automatically monitors
the dynamic attributes of interest to the Resource Discovery Service, and pub-
lishes them on the DHT within the appropriate resource descriptor. Although by
default all the measurements known to the SRDS are enabled, it is now possible to
choose to enable/disable a particular attribute measurement via the srds.properties
file.
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Currently, this feature allows to save a little overhead both in the measurement
process itself and allowing to send shorter messages on the network. However, as
different modules measuring the dynamic data can be made available, it will be
possible to configure which probes are going to be used for the measurement. We
plan to introduce in SRDS a new module based on the REMED P2P algorithm
[3] that will improve the performance of range queries along with reducing of the
traffic generated by resource updates. The basic concept of REMED lies in the
exploitation of the temporal locality of the measurements to skip a percentage of
the attribute updates. This approach inherently gains great advantages in terms of
traffic over the network when the number of attributes published is low.

2.1.4 XML validation

The SRDS continuously exchanges information about XtreemOS resource nodes
with other modules of the system, basically the AEM and the RSS. While existing
standard data encodings, mostly based on XML, have been used when available,
several of the new functionalities of XtreemOS called for the definition of new
XML formats or the extension of existing languages. Action has been taken within
the project to reach a consensus toward common internal standards, and possibly
promote the inclusion of XtreemOS extensions within existing standards.

The approach raises the need to enforce strict adherence to precisely defined
XML interpretation and validation rules, that can enforce an existing standard or
provide a reference implementation for extension proposals. Two formats which
are candidate for extensions are the JSDL one (used to describe Jobs and search
for resources) and the GLUE one (GLUE encodes resource lists for application
to be run onto). The SRDS has been thus provided with strict XML validation
behaviour, that for testing purposes can be disabled or configured to enforce a
specific XML schema and extension (e.g. for the GLUE schema this boils down
to editing the property srds.configuration.files.glueSchema in the srds.properties
config file).

• Resource requests coming from the AEM are subject to validation against
the JSDL standard schema with POSIX and XtreemOS custom extensions.
The JSDL extensions more strictly related to SRDS are described in Section
2.3.

• GLUE validation is performed on the resource list returned by the RSS ser-
vice before the SRDS filters them according to dynamic attribute values.
Concerning the GLUE standard, we are currently using the standard OGF
Schema, version 1.2 with no custom extension. We plan to upgrade from
the 1.2 to the 2.0 GLUE schema version for the next release, and a possible
extension with custom resource attributes is foreseen.
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2.2 Monitoring the Status of Overlays via HTTP
The latest SRDS release introduced a new feature that permits to check the status
of the DHTs that the SRDS exploits. Both the Overlay Weaver and Scalaris DHT
implementation provide by themselves a web monitoring server that allows to
check the current node status, the overlay status and allows to put/get values on
the DHT for testing purposes.

Tools like these are useful when deploying a large system such as XtreemOS,
and testing the correct configuration of the nodes. The OW and Scalaris HTTP
interfaces are available at each node of the overlay at specific TCP ports (although
those can be configured). Of course, in a general settings we will not wish to have
these ports open to the casual users, and it would be quite poor usability to force
the administrator to access several different monitoring tool just in order to check
the overall SRDS configuration is correctly working. We addressed this problem
by grouping those interfaces together within the SRDS.

The Overlay Weaver status interface contains first a short node presentation,
which lists:

• the node ID

• the routing algorithm

• the lookup style.

• the number of stored keys from the web interface

It also shows information regarding the structure of the DHT, showing the list of
nodes belonging to the the predecessor set, the successor set and the the finger
table of the current node.

The Scalaris status interface similarly displays the overlay status, with a node
list and a debugging tool. The full Scalaris web interface can be viewed only
from the Scalaris boot node, while on regular node only minimal information is
reported.

Both the OW and Scalaris interfaces allow getting/putting informations on the
DHT. Deletion is not allowed on Scalaris, and is available with Overlay Weaver
(as it is from the programmer’s API, due to different implementation constraints
of the two DHTs).

SRDS aggregates the OW and Scalaris HTTP interfaces into a single web
interface, in order to simplify the Sysop management. The aggregate interface
provides also a visualizer of recent messages from the xosd daemon local to the
same node, allowing easier checking of any errors/warnings occurred inside the
XOSD service, including those within the SRDS and its linked overlays.
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The aggregation is achieved by means of a small local HTTP proxy/web server,
and security can be enforced by restraining regular users and remote connections
from accessing the monitoring services.

Figure 3: The Overlay Weaver manager interface.
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Figure 4: The Scalaris manager interface.

Figure 5: The log tail visualization page.
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2.3 XML validation

This section describes in detail the validation process for the AEM resource queries
encoded using the Job Description Submitting Language (JSDL). The AEM uses
JSDL for submitting jobs specifications to SRDS, and the Grid Laboratory Uni-
form Environment (GLUE) XML-related language is used for sending replies to
the AEM, describing the services/resources that match the related JSDL encoded
query. Regarding JSDL we presents a set of extensions aimed at increasing the
expressiveness of AEM requests.

Standard JSDL only allows to describe resources whose attributes are all static
(we set forth this distinction at the beginning of section 2.1), in this being tied to
a Scientific HPC Grid mentality, where applications are mostly large MPI batch
jobs running on powerful clusters exclusively with each other. On the other hand,
the XtreemOS platform has a different goal: sharing of computational resources
on a grid must be invisible and efficient just like sharing a single machine among
several applications is today. It is essential thus to be ble to specify constraints
for the application execution which relate the application behaviour to the value
of dynamic attributes.

Being able to specify that an application needs a certain amount of free mem-
ory or a certain amount of available computing power is paramount to avoid trash-
ing effects on both that application and all those which happen to share some
resource with it.

In the following we describe the currently enforced extension schema in Sec-
tion 2.3.1, and then, in Section 2.3.2 the simpler and more useful extensions pro-
posed for the next XtreemOS release.

2.3.1 JSDL validation

The JSDL standard exploits two different XML namespaces to describe different
semantics for some element contained in the standard.

The first namespace (http://schemas.ggf.org/jsdl/2005/11/jsdl) describes all the
elements that belong to the basic JSDL normative schema.

The second one (http://schemas.ggf.org/jsdl/2005/11/jsdl-posix) contains el-
ement that belongs to a particular extension of JSDL. The normative extension
defines a schema describing an application executed on a POSIX compliant sys-
tem. The namespace prefix used for this schema in the specification is jsdl-posix.

We set up a further extension with an additional schema describing dynamic
resource attributes. As explained in section 2, we call dynamic those attributes
that are dynamic-valued. In particular, our schema redefines some elements of
the normative schema that can also have dynamic semantics, and it introduces
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JSDL Name RSS ADS Dynamic Semantics
(static) (dynamic)

OperatingSystem x
CPUArchitecture x
IndividualCPUCount x
IndividualPhysicalMemory x x Amount of free physical memory
IndividualVirtualMemory x x Amount of free virtual memory
IndividualDiskSpace x x Free space on local scratch disk
IndividualNetworkBandwith x x Unallocated network bandwidth

Table 1: JSDL attributes used in SRDS

two new dynamicity-related elements. The new elements are placed within the
jsdl-srds namespace.

Current JSDL Attributes Management (XtreemOS 2.0) Table 1 lists a subset
of JSDL attributes used by RSS and ADS. An attribute may have both static and
dynamic meaning or only the static one. That is, whenever an already existing
JSDL attribute makes sense as a dynamic value, we assign it a double mean-
ing. A requirement on memory can be interpreted in a physical sense (how much
memory is installed on the node) or as a current availability (is there enough free
memory right now on the node?). If an attribute has no meaning when interpreted
as dynamically valued (e.g. the CPU architecture will not change that easily), no
extension is made to the standard for that attribute.

The RSS module is in charge to manage static values of attributes, thus it will
completely ignore dynamic-related JSDL extensions. Out of the static attributes,
OperatingSystem, CPUArchitecture and IndividualCPUCount are exact values,
while IndividualPhysicalMemory, IndividualVirtualMemory, IndividualDiskSpace
and IndividualNetworkBandwith are range values.

Queries with Dynamic Constraints For each attribute handled by the ADS
a value between 0 and 1 is used for exploiting dynamic query. This value is
called dynamic-epsilon and it is mandatory for performs query with dynamic
constraint. It enables the checking of dynamic values for that attribute (according
to the meaning of the attribute listed in table 1), and defines the actual range of
values that are acceptable for the dynamic value.

The threshold value for the value of the dynamic attribue is computed from
the one of the static value, by keeping the same UpperBound (if present) and
multiplying the LowerBound L of the corresponding static range by the dynamic-
epsilon value, to get the dynamic value range. When a resource has a dynamic
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value lower than the threshold, the node is discarded. That allows the end-user
to define queries of the form “I need a machine with 4 GB installed, and at least
2 GB free”. The epsilon value is expressed in the JSDL query by extending the
JSDL syntax with a new XML attribute within the tag specifying the resource
attribute.

<jsdl-srds:IndividualPhysicalMemory dynamic-epsilon="0.8">
<jsdl-srds:Range> .. </jsdl-srds:Range>

</jsdl-srds:IndividualPhysicalMemory>

This mechanism minimizes changes to the JSDL syntax, and allows the same
query to address both the dynamic and the static attributes of a query. Since the
RSS ignores non-standard XML attributes of the query XML tags, the RSS loks
for resources that are within the static range; the ADS will then discard those
which, according to dynamic information, do not belong to the range extended by
the epsilon parameter.

The JSDL standard permits unlimited ranges to either negative or positive in-
finity. A valid dynamic constraint requires both an epsilon value and a L element,
see table 2 for a full desription of the cases of the dynamic-epsilon extension.

Table 2: Semantics of dynamic attribute queries with the dynamic-epsilon JSDL
extension.

Dynamic costraint specification Semantics

<jsdl-srds:Resource
dynamic-epsilon=e>

<L> xx </L> <U> yy </U>

Queries resources with:
xx≤static_attribute≤yy
xx∗e≤dynamic_attribute

<jsdl-srds:Resource
dynamic-epsilon=e>

<L> xx </L>

Queries resources with:
xx ≤ static_attribute
xx∗e≤ dynamic_attribute

<jsdl-srds:Resource
dynamic-epsilon=e>

<U> xx </U>

Incorrect dynamic specification is ignored.
Query processed w.r.t. static attributes only.

<jsdl-srds:Resource>
<L> xx </L> <U> yy </U>

No dynamic specification given. Query pro-
cessed w.r.t. static attributes only.

Extending JSDL with new Tags Table 3 presents the new tags for the XtreemOS
JSDL. These tags convey inherently dynamic values, with no static counterpart.
They are missing in the JSDL standard and are relevant in the XtreemOS settings,
where we want to be able to deploy processes on machine that are only partially
loaded.
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JSDL tag ADS internal name ADS semantic
IdlePercentage IdlePercentage Percentage of idle CPU (%)
Uptime Uptime Time from last reboot (minutes)

Table 3: Dynamic attribute on JSDL

The schemas in the last part of this section, report the namespaces and the full
tags description needed as extension to the JSDL standard schema Version 1.0
created by OGF.

The IdlePercentage element is described by IdlePercentage_Type, much like
the other dynamic elements. It allows dynamic-epsilon attribute and contains
RangeValue_Type subelements.

We decided to create another XML tag for Uptime since for semantic rea-
sons it should not contain a tolerance attribute. In this case we mapped it with
RangeValueNoDynamic_Type that does not allow dynamic-epsilon attribute but
contains the same subelements of RangeValue_Type.

2.3.2 Improved Dynamic Attribute Management

In this section we present two major extension to the JSDL which have been al-
ready coded, but are not yet used in the current XtreemOS release. The aim at sim-
plyfing and make more uniform the definition of constraints based on dynamic-
valued resource attributes. It will substitute the ad-hoc dynamic-epsilon XML
attribute with a more general mechanism which can be applied more uniformly.
The changes in the SRDS version 3 (to be deployed with XtreemOS public releae
2.1) are

1. Improvement on the dynamic-epsilon system management

2. Introduction of two new Resource Tag

Along with the descriptions we enclose the validation schema for our propos-
als.

The old dynamic-epsilon mechanism is now linked to a tag named tolerance,
since this name suits better with the semantic we intend and avoids ambiguity
between actual dynamic value and desired dynamic value.

The tolerance attribute is applied to the already existing XML tags Lower-
Bound, UpperBound, Exact, LowerBoundedRange and UpperBoundedRange.

The threshold value for a query about a dynamic value is computed multiply-
ing the corresponding static lower bound, listed previously, by the tolerance, to
get the lower bound value for the dynamic value range.
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A resource is discarded when the dynamic value for an attribute is not above
the threshold range computed using the tolerance. In case of Exact values a node
is discarded if its dynamic value stays under the threshold (that is, we do not use
the upper bound value we could derive from the Exact specification, as it better
suits the intended use of the tolerance XML attribute).

In the following we show some usage examples of the tolerance attribute.
With the Range values:

<jsdl-srds:IndividualDiskSpace>
<jsdl-srds:Range>

<jsdl-srds:LowerBound tolerance="0.5">30000
</jsdl-srds:LowerBound>
<jsdl-srds:UpperBound tolerance="0.2">600000
</jsdl-srds:UpperBound>

</jsdl-srds:Range>
</jsdl-srds:IndividualDiskSpace>

With the Exact value:

<jsdl-srds:IndividualDiskSpace>
<jsdl-srds:Exact tolerance="0.5">30000
</jsdl-srds:Exact>

</jsdl-srds:IndividualDiskSpace>

Only the LowerBoundedRange element (the syntax is the same for the Upper-
BoundedRange)
<jsdl-srds:IndividualDiskSpace>

<jsdl-srds:LowerBoundedRange>2097152.0
</jsdl-srds:LowerBoundedRange>

</jsdl-srds:IndividualDiskSpace>

Managing Vivaldi coordinates A new feature of the SRDS is to manage neigh-
borhood queries on Vivaldi coordinates1 inside resource queries. The JSDL re-
quest contains inside the Resource tag a new XML tag called Vivaldi:
<jsdl:Resources>
...

<jsdl-srds:Vivaldi>
<jsdl-srds:Coordinatex>34,567 </jsdl-srds:Coordinatex>
<jsdl-srds:Coordinatey>2,589 </jsdl-srds:Coordinatey>
<jsdl-srds:radius>10,456</jsdl-srds:radius>

</jsdl-srds:Vivaldi >
</jsdl:Resources>

1Vivaldi coordinates are pseudo coordinates iteratively computed from a set of network delay
measurements among resource pairs. Vivaldi coordinates allow to estimate network proximity, i.e.
expected communication delay, between arbitrary pairs of nodes.
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A set of resulting machines should have vivaldi coordinates in the resulting GLUE
XML answer, and those coordinates shall fit within the area delimited by the circle
with origin in (Coordinatex,Coordinatey) and radius ray.

The Vivaldi constraint in the requests can be specified to be mandatory or not.
If we want a set of machines that fits the resources constraints (IndividualPhys-
icalMemory, IdlePercentage, IndividualVirtualMemory etc.) and it is preferable
(not mandatory) for them to lie within the circle defined by the Vivaldi constraint,
we choose this behaviour by means of the same Vivaldi JSDL tags. The attribute
of the Vivaldi tag expressesing best-effort or strict meaning for coordinate match-
ing is named mandatory and must have a boolean value.

An example:
<jsdl:Resources>
...
<jsdl-srds:Vivaldi mandatory="true">

<jsdl-srds:Coordinatex>34,567 </jsdl-srds:Coordinatex>
<jsdl-srds:Coordinatey>2,589 </jsdl-srds:Coordinatey>
<jsdl-srds:radius>10,456</jsdl-srds:radius>

</jsdl-srds:Vivaldi >
</jsdl:Resources>

By default, matching is strict. In this case all the resulting machines should fits
with all the resources tag.
<jsdl:Resources>
...
<jsdl-srds:Vivaldi mandatory="false">

<jsdl-srds:Coordinatex>34,567 </jsdl-srds:Coordinatex>
<jsdl-srds:Coordinatey>2,589 </jsdl-srds:Coordinatey>
<jsdl-srds:radius>10,456</jsdl-srds:radius>

</jsdl-srds:Vivaldi >
</jsdl:Resources>

A false mandatory flag specifies a simple preference for machines into the circle,
but we will also accept machines outside it.

JSDL SRDS schema
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-srds"
elementFormDefault="unqualified"
xmlns:jsdl-srds="http://schemas.ggf.org/jsdl/2005/11/jsdl-srds">
<!-- COMPLEX TYPES: Definitions for the RangeValueType -->

<xsd:complexType name="Boundary_Type">
<xsd:simpleContent>

<xsd:extension base="xsd:double">
<xsd:attribute name="exclusiveBound" type="xsd:boolean" use="optional"/>

<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="Exact_Type">

<xsd:simpleContent>
<xsd:extension base="xsd:double">
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<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="Range_Type">

<xsd:sequence>
<xsd:element ref="jsdl-srds:LowerBound"/>
<xsd:element ref="jsdl-srds:UpperBound"/>

</xsd:sequence>
<!-- xsd:anyAttribute namespace="##other" processContents="lax"/ -->

</xsd:complexType>

<xsd:complexType name="RangeValue_Type">
<xsd:sequence>

<xsd:element ref="jsdl-srds:UpperBoundedRange" minOccurs="0"/>
<xsd:element ref="jsdl-srds:LowerBoundedRange" minOccurs="0"/>
<xsd:element ref="jsdl-srds:Exact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="jsdl-srds:Range" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="dynamic-epsilon" type="xsd:double" xmlns="default namespace" use="required"/>
<!--xsd:anyAttribute namespace="##other" processContents="lax"/-->

</xsd:complexType>
<xsd:complexType name="RangeValueNoDynamic_Type">

<xsd:sequence>
<xsd:element ref="jsdl-srds:UpperBoundedRange" minOccurs="0"/>
<xsd:element ref="jsdl-srds:LowerBoundedRange" minOccurs="0"/>
<xsd:element ref="jsdl-srds:Exact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="jsdl-srds:Range" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<!--xsd:anyAttribute namespace="##other" processContents="lax"/-->
</xsd:complexType>

<!-- ==============Tag added by SRDS================== -->
<!-- va definita la semantica esatta di IDLEPERCENTAGE -->

<xsd:element name="IdlePercentage" type="jsdl-srds:RangeValue_Type"/>
<xsd:element name="Uptime" type="jsdl-srds:RangeValueNoDynamic_Type"/>
<!-- ============================================================== -->

<xsd:element name="IndividualPhysicalMemory" type="jsdl-srds:RangeValue_Type"/>
<xsd:element name="IndividualVirtualMemory" type="jsdl-srds:RangeValue_Type"/>
<xsd:element name="IndividualNetworkBandwidth" type="jsdl-srds:RangeValue_Type"/>
<xsd:element name="IndividualDiskSpace" type="jsdl-srds:RangeValue_Type"/>

<xsd:element name="UpperBoundedRange" type="jsdl-srds:Boundary_Type" />
<xsd:element name="LowerBoundedRange" type="jsdl-srds:Boundary_Type"/>
<xsd:element name="Exact" type="jsdl-srds:Exact_Type" />
<xsd:element name="Range" type="jsdl-srds:Range_Type" />
<xsd:element name="LowerBound" type="jsdl-srds:Boundary_Type"/>
<xsd:element name="UpperBound" type="jsdl-srds:Boundary_Type"/>

</xsd:schema>

JSDL SRDS schema with Tolerance attribute and tag for Vivaldi coordinates
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://schemas.ggf.org/jsdl/2005/11/jsdl-srds"
elementFormDefault="unqualified"
xmlns:jsdl-srds="http://schemas.ggf.org/jsdl/2005/11/jsdl-srds">
<!-- COMPLEX TYPES: Definitions for the RangeValueType -->

<xsd:complexType name="Boundary_Type">
<xsd:simpleContent>

<xsd:extension base="xsd:double">
<xsd:attribute name="exclusiveBound" type="xsd:boolean" use="optional"/>
<xsd:attribute name="tolerance" type="xsd:double" xmlns="default namespace" use="required"/>

<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="Exact_Type">
<xsd:simpleContent>

<xsd:extension base="xsd:double">
<xsd:attribute name="tolerance" type="xsd:double" xmlns="default namespace" use="required"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

<xsd:complexType name="DoubleValue_Type">
<xsd:simpleContent>
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<xsd:extension base="xsd:double">
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="Range_Type">
<xsd:sequence>

<xsd:element ref="jsdl-srds:LowerBound"/>
<xsd:element ref="jsdl-srds:UpperBound"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="RangeValue_Type">
<xsd:sequence>

<xsd:element ref="jsdl-srds:UpperBoundedRange" minOccurs="0"/>
<xsd:element ref="jsdl-srds:LowerBoundedRange" minOccurs="0"/>
<xsd:element ref="jsdl-srds:Exact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="jsdl-srds:Range" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="RangeValueNoDynamic_Type">
<xsd:sequence>

<xsd:element ref="jsdl-srds:UpperBoundedRange" minOccurs="0"/>
<xsd:element ref="jsdl-srds:LowerBoundedRange" minOccurs="0"/>
<xsd:element ref="jsdl-srds:Exact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="jsdl-srds:Range" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="VivaldiValue_Type">
<xsd:sequence>

<xsd:element ref="jsdl-srds:Coordinatex" minOccurs="1" maxOccurs="1" />
<xsd:element ref="jsdl-srds:Coordinatey" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="jsdl-srds:Radius" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="mandatory" type="xsd:boolean" xmlns="default namespace" use="required"/>

</xsd:complexType>

<!-- ==============Tag added by SRDS================== -->

<xsd:element name="IdlePercentage" type="jsdl-srds:RangeValue_Type"/>
<xsd:element name="Uptime" type="jsdl-srds:RangeValue_Type"/>
<!-- ============================================================== -->

<xsd:element name="IndividualPhysicalMemory" type="jsdl-srds:RangeValue_Type"/>
<xsd:element name="IndividualVirtualMemory" type="jsdl-srds:RangeValue_Type"/>
<xsd:element name="IndividualNetworkBandwidth" type="jsdl-srds:RangeValue_Type"/>
<xsd:element name="IndividualDiskSpace" type="jsdl-srds:RangeValue_Type"/>
<xsd:element name="Vivaldi" type="jsdl-srds:VivaldiValue_Type"/>
<xsd:element name="Coordinatex" type="jsdl-srds:DoubleValue_Type"/>
<xsd:element name="Coordinatey" type="jsdl-srds:DoubleValue_Type"/>
<xsd:element name="Radius" type="jsdl-srds:DoubleValue_Type"/>

<xsd:element name="UpperBoundedRange" type="jsdl-srds:Boundary_Type" />
<xsd:element name="LowerBoundedRange" type="jsdl-srds:Boundary_Type"/>
<xsd:element name="Exact" type="jsdl-srds:Exact_Type" />
<xsd:element name="Range" type="jsdl-srds:Range_Type" />
<xsd:element name="LowerBound" type="jsdl-srds:Boundary_Type"/>
<xsd:element name="UpperBound" type="jsdl-srds:Boundary_Type"/>

</xsd:schema>

An example of JSDL that uses all namespaces
<?xml version="1.0" encoding="UTF-8"?>
<!-- this jsdl file contains all dynamic elements with related

dynamic-epsilon values, further it contains POSIXApplication
element.

-->
<jsdl:JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
xmlns:jsdl-srds="http://schemas.ggf.org/jsdl/2005/11/jsdl-srds"
xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"
xsd:schemaLocation="http://schemas.ggf.org/jsdl/2005/11/jsdl Jsdl_Normative_OGF.xsd">

<jsdl:JobDescription>
<jsdl:JobIdentification>

<jsdl:JobName>My Gnuplot invocation</jsdl:JobName>
<jsdl:Description> Simple application invocation:

User wants to run the application ’gnuplot’ to
produce a plotted graphical file based on some data
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shipped in from elsewhere(perhaps as part of a
workflow). A front-end application will then build
into an animation of spinning data.
Front-end application knows URL for data file which
must be staged-in. Front-end application wants to
stage in a control file that it specifies directly
which directs gnuplot to produce the output files.
In case of error, messages should be produced on
stderr (also to be staged on completion) and no
images are to be transferred.

</jsdl:Description>
</jsdl:JobIdentification>
<jsdl:Application>

<jsdl:ApplicationName>gnuplot</jsdl:ApplicationName>
<jsdl-posix:POSIXApplication>

<jsdl-posix:Executable>
/usr/local/bin/gnuplot

</jsdl-posix:Executable>
<jsdl-posix:Argument>control.txt</jsdl-posix:Argument>
<jsdl-posix:Input>input.dat</jsdl-posix:Input>
<jsdl-posix:Output>output1.png</jsdl-posix:Output>

</jsdl-posix:POSIXApplication>
</jsdl:Application>
<jsdl:Resources>

<jsdl-srds:IndividualPhysicalMemory dynamic-epsilon="0.3">
<jsdl-srds:LowerBoundedRange>2097152.0</jsdl-srds:LowerBoundedRange>

</jsdl-srds:IndividualPhysicalMemory>
<jsdl-srds:IndividualVirtualMemory dynamic-epsilon="0.3">

<jsdl-srds:LowerBoundedRange>2097152.0</jsdl-srds:LowerBoundedRange>
</jsdl-srds:IndividualVirtualMemory>
<jsdl-srds:IndividualNetworkBandwidth dynamic-epsilon="0.3">

<jsdl-srds:LowerBoundedRange>20971.0</jsdl-srds:LowerBoundedRange>
</jsdl-srds:IndividualNetworkBandwidth>
<jsdl-srds:IndividualDiskSpace dynamic-epsilon="0.3">
<jsdl-srds:Range>

<jsdl-srds:LowerBound>0</jsdl-srds:LowerBound>
<jsdl-srds:UpperBound>600000</jsdl-srds:UpperBound>

</jsdl-srds:Range>
</jsdl-srds:IndividualDiskSpace>
<jsdl-srds:IdlePercentage dynamic-epsilon="0.3">

<jsdl-srds:LowerBoundedRange>20971.0</jsdl-srds:LowerBoundedRange>
</jsdl-srds:IdlePercentage>
<jsdl-srds:Uptime>
<jsdl-srds:Exact>10</jsdl-srds:Exact>

</jsdl-srds:Uptime>
</jsdl:Resources>
<jsdl:DataStaging>

<jsdl:FileName>control.txt</jsdl:FileName>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>
<jsdl:Source>

<jsdl:URI>http://foo.bar.com/~me/control.txt</jsdl:URI>
</jsdl:Source>

</jsdl:DataStaging>
<jsdl:DataStaging>

<jsdl:FileName>input.dat</jsdl:FileName>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>
<jsdl:Source>

<jsdl:URI>http://foo.bar.com/~me/input.dat</jsdl:URI>
</jsdl:Source>

</jsdl:DataStaging>
<jsdl:DataStaging>

<jsdl:FileName>output1.png</jsdl:FileName>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>
<jsdl:Target>

<jsdl:URI>rsync://spoolmachine/userdir</jsdl:URI>
</jsdl:Target>

</jsdl:DataStaging>
</jsdl:JobDescription>

</jsdl:JobDefinition>
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2.4 Neighborhood Query Functionality
The latest release of SRDS provides a simple neighbourhood query functionality.
The functionality has been designed using as a reference case the need to store Vi-
valdi network coordinates of several resources [6] and then query resources within
a specified radius from a given coordinate pair. Vivaldi coordinates are pseudo
coordinates iteratively computed by a distributed algorithm from a set of network
delay measurements among resource pairs. Vivaldi coordinates allow to estimate
the degree of network proximity, i.e. estimate the expected communication delay,
between arbitrary pairs of nodes. A first concrete application of this approach
is the storing of XFS servers and XtreemOS mobile devices with bidimensional
Vivaldi coordinates, in order to match nearby file server to mobile resources and
allow efficient access to XFS from mobile clients.

Relying on the sharing of a data structure distributed over a DHT, the mecha-
nism shall support concurrent access, on the ground that updating the coordinate-
resource relationship will certainly happen over time. We choose to exploit a
DHT with transactional properties in order to ensure safe concurrent operation.
The Scalaris DHT [21] provides a mechanism for enveloping a list of DHT op-
erations into a transactional session with commit/abort functionality. The basic
mechanism has been exploited within the concurrent-safe general query engine
described in Section 2.1.

Client Interface There are two principal interfaces that are currently exported
via DIXI/XATI.

• pushingVivaldiCoordinates(Double x, Double y, InetAddress IP)

It is used to push machine’s vivaldi coordinates into the DHT. We assume
for now that these are two-dimensional coordinates with no negative values.
The approach, as described below, is adopted just for the sake of simplifying
the first implementation.

• searchVivaldiNeighbors(Double originX, Double originY, Double rad, int
wantedResult)

It is used to retrieve a set of at least wantedResult machines that reside in
the area defined by the origin coordinates and the radius.

Implementation Current implementation assumes that the coordinate space can
be divided into square blocks. To store the data concerning to a resource we will
use a few namespaces. In the following we will simply refer to the data with
the name of IP, which is the distinguishing trait of a resource, and we will use
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additional namespaces as indexes to speed up neighbourhood searches. The size
of the squares used to partition the Vivaldi coordinate space is flexible.

The namespaces used in the implementation are stored within the Scalaris
DHT, so where needed all the operation within a namespace is enclosed in a
transaction, letting e.g. each get/update pair an atomic operation. The current
implementation does not actually need more than that, although it would also be
possible to support transactions over multiple namespace operations, as long as
they are mapped to the same Scalaris instance.

We use the scalaris DHT with three different namespaces one for X coordi-
nates, one for Y coordinates and another one for the IPs. Basically we discretize
the X and Y values in set of delimited values X1,X2,...,Xn Y1,Y2,...,Yn every Yi

and Xi representing a primary key in the associated namespace.
When choosing how to group data into data structures within the DHT, we

avoided excessive fragmentation and split the data only along a single dimension.
Each Xi key thus manages a set of values (xj, y, IP ) such that Xi ≤ xj < Xi+1,
and the Yi keys behave correspondingly. We have traded some selectivity in the
search for a lower number of DHT accesses and transactions. The two X and Y
namespaces are used only to optimize the search direction, allowing to reduce the
search into a single namespace and then filter the results locally.

Of course, supporting a larger amount of data requires moving to a namespace
where the (Xi, Yi) pair is the key, and the search procedure that we describe in the
following is actually performed along both axes.

When a new pushing request arrives the mechanism make an approximation of
X ,Y value and store it into the DHT. We assume each IP record is updated only by
one entity (tipically, the resource itself), thus simplifying transaction management
in Algorithm 1.

Algorithm 1 Coordinate Pushing Algorithm
1: if namespaceIP.get(IP )$= ∅ then
2: dht.remove(IP )
3: end if
4: namespaceIP.put(IP ,touple(X ,Y ,IP ))
5: namespaceX.update(square(X), touple(X ,Y ,IP ))
6: namespaceY.update(square(Y ), touple(X ,Y ,IP ))

Clearly, two different machines may request to update the same X or Y aux-
iliary record, so the update operation in these namespaces are made atomic by
wrapping each one inside a transactional session. No cross-namespace transac-
tion handling is needed, as the values being updated in each X and Y auxiliary
record are strictly disjoint for different resources, by the assumptions we made
before, and thus secondary namespace updates do not need to be totally ordered
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Algorithm 2 Retrieving algorithm
1: function searchVivaldiNeighbors

(double X0, double Y0, double r, int howmanyres) {
2: Array results← ∅
3: Xmin ← getstrip(X0 − r)
4: Xmax ← getstrip(X0 + r)
5: X ← getstrip(Xo)
6: i ← 0
7: explore(X ,results)
8: while X− i ≥ xmin && X + i ≤ xmax && results.size()≤ howmanyres do
9: explore(X − i)

10: explore(X + i)
11: i + +
12: end while
13: }

14: function explore(Int X , Array results) {
15: resstripe ← dht.getstriperes(X)
16: // function Intersect return results from stripe that intersect the circle
17: results.add(intersect(resstripe)
18: }
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to ensure consistency (although, of course, a slow update on the auxiliary names-
pace may affect query results which concurrenlty explore the corresponding part
of the coordinate space).

Whenever a new neighbourhood request arrives, the algorithm computes the
circle centered at the point P = (originX, originY ) having radius rad. It then
searches for matching IP records within the given circle area by exploring one of
the two auxiliary spaces (in our case, the X namespace, but of course Y may be
chosen if it leads to a lower number of operations).

The algorithm starts to seek for results from the stripe containing P and con-
tinues outward until all the stripes intersecting the circle have been explored, or
the desired number of results has been found.

Figure 6: X-defined stripes and intersection with targeted neighbourhood

2.5 SRDS Performance Tests
This section describes the experiments performed to evaluate the scalability and
the performance of the SRDS component. In particular we have tested the la-
tency of two SRDS services whose implementations has been modified, that is
the service exploited by Job Directory Service (JDS) and the service exploited by
Application Execution Manager (AEM). In order to test the AEM link, we submit
a simple JSDL query to simulate the request issued for a job execution. In the
JDS test we focus on a number of operations to manage insertion, modification
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Figure 7: Average latency of AEM operations with increasing overlay size and
varying percentage load.

and deletion of a job from the distribute Job Directory. Unless otherwise indi-
cated, the overlay networks active during the tests of the SRDS are the RSS and
the Overlay Weaver.

SRDS has been tested as a stand-alone component. The requests were for-
warded to the node via the RMI interface we use for our everyday test, and not
by the DIXI framework as in the complete XtreemOS platform. In the AEM test,
since we measure latencies only after the request has been already received by the
SRDS, the measurements are equivalent than using DIXI, but using RMI give us
an additional flexibility to perform more exhaustive tests. The latency measures
for JDS actually contains the RMI overhead which is actually negligible (about
10 milliseconds).

2.5.1 AEM performance tests

The AEM performance in locating resources on a large network according to a
JSDL query has been tested by measuring the operation latency on a subset of
the Grid5000/Aladdin computing platform2. We measured the performance of
the SRDS prototype, with the OW and the RSS overlays active, scaling up the
network size from 8 to 120 nodes. For these tests we used the RMI interfaces

2Experiments presented in this section were carried out using the Grid’5000 experimen-
tal testbed, being developed under the INRIA ALADDIN development action with sup-
port from CNRS, RENATER and several Universities as well as other funding bodies (see
https://www.grid5000.fr).
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of SRDS, and we measured the overhead with the SRDS subtracting the RSS
query resolution time. The SRDS version used in the test is the “production”
one already distributed with the XtreemOS public release 2, not including latest
additions which will be released later on, e.g. the REMED algorithm to speed up
dynamic attribute matching [3].

As the testbed used cannot be allocated to this kind of XtreemOS testing for
more than minutes, and the node reservations usually end up each one with a
different set of machine belonging to several clusters of Grid5000, we had to
specifically take care of overlay stabilization.

The test was structured as a double experiment, with two straws of requests
coming from a subset of the nodes, separated by about a minute. This allows the
overlay networks to stabilize thanks to the first straw and the pause, before we
measure the actual system behaviour.

In the test, which is designed to evidence the limits of the system, all nodes
provide their own information and a variable percentage of them also take part in
the request activity. The percentage of nodes which perform queries varies from
10% to 100% of the testbed. The queries were crafted to avoid degeneration (i.e.
results which are always empty, or always hit the whole platform), with found
results limited to a small number (up to 16 in the largest overlay configuration) in
order to reproduce a typical query traffic.

The small tests (up to 64 machines) where almost always on a single cluster,
while larger testbeds where using machines from physically separate clusters.

As we can see from figure 7, the average latency of the resource discovery
increases with the size of the platform, due both to the logarithmic complexity of
the DHT routing, and to the linear increase (w.r.t. the size of the answer) related
to checking dynamic attribute constraints in current implementation. The second
cost term is going to be reduced by the adoption of more sophisticated techniques
like REMED [3].

We also underline that several glitches in the network, in the form of sporadic
very high query processing times, were observed during the experiment. While
the average service time is good, we have a population of very fast latencies, well
below 200ms, and another population of high latencies which offset the average
and are often due to network timeouts during the DHT and RSS routing. Figure 8
show the standard deviation of the latencies previously shown.

This is most likely due to the high network load of the testbed, where the
portion of resources which are not used in our tests are usually allocated to HPC
job with high computation and communication demand. This interpretation is
supported by the observation that using larger platforms (i.e. reserving almost all
the machines in the clusters we are using as testbed) actually seems to reduce the
average and the standard deviation of the measured latencies.
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Figure 8: Standard deviation of the latency of AEM operations with increasing
overlay size and varying percentage load.

Table 4: JDS operations with the cost in terms on DHT accesses
Function Cost in term of DHT primitives
AddJob a number of put/get
RemoveJob a number of put/get and a single remove
{Remove, Add, Update}Attribute a single DHT get and put
GetJob, GetAttribute a single DHT get

2.5.2 JDS Performance

To test the scalability of the SRDS we measured the latency of a number of JDS
operations. Table 4 shows the complete list of measured operations with the rel-
ative cost in term of primitive message over the DHT overlay. The complexity of
the operations is variable, but is rather homogeneous, e.g. the GetJob is a single
DHT get, while the AddJob requires a sequence of put/get primitives. Here, “a
number” of put and gets depends on the number of strict attributes as defined in
Section 2.1, and it is roughly 2k + 1 put/get operations if k is the number of strict
attributes.

The tests have been repeated with different network sizes (8, 16, 32, 64 and
128 nodes). All the nodes belong to the bordeaux site of Grid5000, except for
those tests with 64 and 128 nodes, for which we used nodes from three different
clusters (bordereau, bordemer, bordeplage).
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The test has been structured in the following way. First, all the nodes start
SRDS and wait 60 seconds in order to make the RSS and Overlay Weaver sta-
bilize. The resource monitor is kept active during the whole test, so all nodes
perform a put primitive with the locally measured data at a fixed rate (every 20
seconds).

After this first stabilization phase, we launch two test runs. Each test con-
sists in three request for each JDS operations, separated by a time interval of 200
milliseconds. The latencies were computed considering only the second straw of
requests, and averaging all results. The measurements also take in account the
delay of the RMI interface used to deliver requests to single nodes.

The results, presented in Figure 9, show that latencies scale with an increasing
number of nodes in the network. Furthermore it is also clearly visible that JDS
operations with similar requirements in terms of DHT primitives show a similar
behaviour among themselves.
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Figure 9: Latency of JDS operations with increasing overlay size.

2.6 Conclusions
In this first part of the deliverable we have shown the improvements and changes
of the SRDS addressing network fault tolerance, extended configurability, and
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stronger checking of system interaction, which were designed in order to strengthen
the integration within the XtreemOS system, and make XtreemOS itself more ro-
bust. Besides, we described an integrated overlay monitoring interface, improving
system management.

The XML validation mechanism put in place within the SRDS will be used
to enforce strict checking of the extensions to the JSDL standard which are being
developed within the project. Those extensions directly concerning the resource
discovery mechanisms were also documented in this section.

Finally, test results of the latency of AEM and JDS operations had been an-
alyzed, leading to the conclusion that the SRDS is a scalable system for the
XtreemOS purposes, and that integrating improved algorithms for dealing with
dynamically-updated values can improve the overall SRDS performance when
large resource requests are issued.
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(a) Neighboring Cells (b) Node A’s neighbors

Figure 10: Sample 2-dimensional attribute space divided into cells.

3 RSS

In the past year, the work on the Resource Selection Service has focused on im-
provements targeted at making the administration of RSS easier.

As described in Deliverables D3.2.4 and D3.2.8 and [5], the RSS nodes build
a P2P overlay using a multi-dimensional virtual coordinate space. Each node is
mapped onto this virtual space based on its static attribute values and is repre-
sented as a point. The virtual space is divided into a set of cells using a recursive
algorithm shown in Figure 10. Specifically, the space is partitioned along each
dimension (similar to a mesh) using a set of cell boundaries. As shown in Fig-
ure 10(b), to allow query routing, each node maintains a number of links to other
nodes located in specific other cells of the overlay. In addition, each node is sup-
posed to maintain a full list of other nodes located in the same lowest-level cell.
We call these other neighbors the order-zero neighbors.

The work on RSS management is organized into two parts. First, we need to
allow system administrators to control the RSS better, especially to maintain the
set of attributes handled by the RSS. This means, we must be able to dynami-
cally add or remove dimensions to/from the RSS overlay, and update the overlay
links to allow queries to be routed in the new overlay. Second, the RSS needs a
number of internal configuration parameters such as the boundaries between cells
and the nesting level. We developed mechanisms to allow the RSS to tune these
parameters automatically through the use of self-managing algorithms.
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3.1 RSS manual management
There are several situations in which the grid administrators may need to modify
the set of attributes that describe the computing resources. For example, a new
attribute has to be added if the users need a specific library and the resource selec-
tion service has to distinguish between the nodes that have the library and those
that don’t (or even more, to distinguish between different versions of the library).
In case a certain library or feature is not needed anymore, we need to be able to
remove the corresponding attribute from the computing nodes. Another possible
case is the one in which the method to compute the attribute values has to be
modified. For example, there could be changes in the measurement unit for an
attribute, or in the system files from where a value is read, or in a benchmarking
method (if the value represents a benchmark score).

It would not feasible to shutdown and restart the resource selection service in
the whole grid when we need to apply such changes - especially since it is prac-
tically impossible to synchronize all the machines to start with the new version in
the same time. This would also introduce a quite significant downtime in which
the users’ requests cannot be processed. Thus, we need to add dynamic adaptation
support in the RSS in order to allow the runtime modification of the attribute set.
In essence this means adding and removing dimensions in the multi-dimensional
space used to model the RSS overlay. Another issue that needs to be considered in
this context is that during the reconfiguration we must support co-existing nodes
that have different attribute sets.

We have designed a protocol for modifying dynamically the dimension sets
and tested it through simulation, using PeerSim. In the remainder of this section
we shall describe the protocol and the simulation results.

3.1.1 Requirements for updating the dimension set

In XtreemOS, we assume that the changes in the dimension set will be introduced
only by the VO administrator; that is, there will be a single node from the overlay
that will inject these changes into the system.

The Resource Selection Service will support three types of dimension set up-
dates:

• adding a dimension: this requires the administrator to specify the name of
the new attribute, and a method to calculate its value;

• removing a dimension: the administrator has to specify the name of the
dimension to be removed;

• updating a dimension: this refers to changing the method by which an
attribute value is computed; the administrator will provide the new value.
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In our implementation, the update operation is represented as an add opera-
tion, that specifies the name of the dimension to be updated and the new descrip-
tion of the dimension.

In order to support updates of the dimension set, there are two issues that the
RSS needs to address: propagating the update to all the nodes in a short time,
and handling the user queries while the update is being done. The following two
subsections explain how we addressed these issues.

3.1.2 The update protocol

The problem of propagating the dimension set updates has similarities with the
problem of propagating updates in a distributed data store. This problem has been
extensively studied [20], and the two most popular approaches to it are:

• propagating the state (i.e., the whole set of data that has been updated)

• propagating only the update operations

The second method is preferred in most of the cases, because it incurs a lower
overhead, and also because it allows for the merging of write operations done by
multiple processes.

However, in our case the first method is more convenient because the problem
is simpler than the general case of updating a distributed data store. Specifically,
here are the significant aspects that differ from the general case:

• the data set (i.e., the set of dimensions) is small, and transmitting the whole
set from one node to another does not bring a significant overhead

• there is a single administrator that injects changes into the system, so we do
not have to merge modifications that come from different sources

The new dimension sets are disseminated through a push-pull gossip protocol,
which allows for a rapid propagation (exponential rate) and has the advantage of a
low overhead. Specifically, we use the same Cyclon protocol [25] that stays at the
base of the RSS overlay. In order to minimize the communication overhead, the
nodes exchange the full information only for the dimensions that actually need to
be updated.

The administrator associates each update with a timestamp; also, each dimen-
sion is associated with a timestamp that represents the time of the last modification
done to that dimension (or the time when the dimension was introduced, if there
are no modifications). Thus, we define the signature of a dimension set as a set of
pairs (dimension_namei, timestampi) and a of the timestamp for the whole set.
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UpdateDimensionSet(node):
neighbor ← select random neighbour
send (GossipRequest: my_timestamp) to neighbor
receive (GossipResponse: neighbor_timestamp) from neighbor
if my_timestamp < neighbor_timestamp then

receive(dimension_set_signature) from neighbor
dimensions_list ← determine set of dimensions that need updates
send (DimensionsRequest: dimensions_list) to neighbor
receive (DimensionsResponse: updated_dimensions) from neighbor
update dimension set

else
send(dimension_set_signature) to neighbor
receive (DimensionsRequest: dimensions_list) from neighbor
send (DimensionsResponse: updated_dimensions) to neighbor

end if

Figure 11: Pseudocode for a gossip exchange during which a node updates its
dimension set.

Each node periodically gossips with one of its Cyclon neighbors in order to
update the dimension set. We are using a push-pull gossip model, meaning that
whichever of the two nodes has an older dimension set, it will obtain the update
from the other one. Specifically, when two nodes gossip, they first exchange the
timestamps of their dimension sets. If these are different, the node with the older
version of the set will get the signature for the other node’s dimension set. Then,
it will compare the newer signature with its own and will request from the other
node the full information only for the dimensions that were actually modified. The
pseudocode for the gossip exchange is shown in Figure 11.

3.1.3 Query handling during updates

Although the system converges very fast to recreate internal overlay links after
making a dimension set update, there is a time interval during which some nodes
have different dimension sets than the others. The main difficulty in handling
queries during these intervals is that some nodes have incomplete neighbor sets:
either because they have just switched to the new dimension set and have not
found enough neighbors yet, or because they still have the old dimension set and
their former neighbors have already switched to the new one.

There are two possible directions for approaching this problem:

1. Maximizing the delivery rate: the delivery rate can be kept almost unmod-
ified if each node will simultaneously keep separate lists of neighbors, ac-
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cording to the new and the old dimension sets. Unfortunately this approach
incurs a higher overhead and also introduces new issues (e.g., for how long
to keep the old list, or how to decide which neighbors list to use for routing
queries).

2. Minimizing the overhead: another possibility is to delay the queries re-
ceived during a system reconfiguration until the overlay becomes stable
again (or even to reject queries during reconfiguration). This is a simpler
solution and does not introduce the overhead of storing and managing addi-
tional neighbors list. However, it would affect the availability of the system,
especially in the case of two or more subsequent reconfigurations.

We opted for an approach that represents a compromise between these two
directions, in terms of overhead and availability. Specifically, the current version
of the protocol can handle queries during reconfiguration, but only routes them
among neighbors that have the same version of the dimension set. The query will
be interpreted according to the dimension set of the node that initially introduced
it. The nodes only keep neighbors lists for the current dimension set, and thus
the query will only be routed through nodes that have the same set as its initiator
node.

The solution that we have chosen is simple to implement and does not add
any overhead to the base protocol. However, it causes a temporary drop in the
query delivery rate during reconfiguration. We performed a set of simulation ex-
periments in order to evaluate this effect and to estimate whether the delivery rate
decrease remains at an acceptable level. We also proposed an improvement in the
RSS base protocol, in order to reduce the time interval during which the query
delivery rate drops. The simulation results and the protocol improvement are pre-
sented in the following two sections.

3.1.4 Simulation results

The first set of simulation experiments that we have performed aimed to evaluate
the speed at which the dimension set updates are propagated through the system.
Our experiments showed that the updates are spread at an exponential rate among
the nodes, which is consistent with the theoretical results proved by the existing
litterature on push-pull gossiping [15].

Figure 12 presents the results that we have obtained for 100,000 nodes, inject-
ing three consecutive dimensions set changes into the system. On the y axis we
represented the total number of nodes that have received an update (each curve
corresponding to one of the three updates). The x axis represents the time, mea-
sured in gossip cycles. A gossip cycle is the time interval during which a node
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Figure 12: Propagation of the dimension set updates among nodes.

initiates an information exchange (gossips) with one of its neighbors. All the
nodes gossip periodically with the same frequency, and usually the length of a
gossip cycle is of a few seconds.

After estimating the speed for spreading updates in the system, we also per-
formed simulation tests to evaluate the ability of the RSS to respond to queries
during reconfiguration. We simulated a set of reconfiguration operations (adding
or removing dimensions), while continuously launching queries into the system.
These tests were made with 1000 simulated nodes, each having a gossip cache

size of 30 and a gossip length of 5; the gossip length represents the number of
items that two nodes exchange when gossiping. Figure 13 shows the delivery rate
for an experiment in which a dimension was added to a dimension set with 2 ini-
tial dimensions; the reconfiguration was done at 90 gossip cycles from the system
startup. Figure 14 shows the delivery rate for an experiment in which we initiated
two reconfiguration operations: removing a dimension and then adding a new one
(at 80 and 160 cycles from the system startup).

From the results shown in these figures, and also from other similar simulation
experiments, we observe that:

• The RSS overlay needs some time to converge, as the nodes need to build
their lists of neighbors. During this time, the service will only return partial
respones to queries, as it is not able to find all the nodes from the network
that match the given criteria. We observed that it takes approximatively 30
gossip cycles until the query delivery rate raises above 80%. However we

37



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160

de
liv

er
y

cycles

Delivery during reconfiguration

Figure 13: Query delivery rate when the RSS is reconfigured once.
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Figure 14: Query delivery rate when the RSS is reconfigured twice.
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note that in the experiments we performed, the system was configured to
search for all the nodes from the system that match the given criteria. In
real-life situations this happens only rarely, as most of the queries request
only a limited number of nodes; for this type of queries, the RSS is able to
provide 100% delivery rate within a very short time after startup.

• After a reconfiguration of the dimension set, the overlay also needs time to
rebuild itself. Although the nodes reuse items from their previous lists of
neighbors when they are creating the new lists, the structure of the multidi-
mensional space is changed and the nodes will have to find new neighbors
that they weren’t previously connected to. For this reason, the number of
cycles needed to rebuild the overlay after a reconfiguration is similar with
the number of cycles needed to build the overlay at startup.

3.1.5 Convergence optimizations

As we have seen in the previous section, after a reconfiguration the RSS overlay
needs several gossip cycles to rebuild itself, and the number of cycles is of the
same order of magnitude with the number of cycles needed to build the overlay
after a system startup – as these two processes are very similar.

The time needed by the overlay to converge at system startup usually does not
represent a significant problem, but as we introduced the possibility to reconfigure
the system this issue becomes more important. As the overlay must be rebuilt at
each system reconfiguration, we need to ensure a low convergence time. For this
reason, we improved the original RSS protocol in order to reduce the convergence
time; this will have an impact both on system startup and on reconfiguration.

Additional simulations (not discussed here in details) show that the delay in
the overlay’s convergence is mainly due to the longer time needed by the nodes to
find the full list of other nodes located in their lowest-level cell (called the zero-
order neighbors). This is caused by the fact that the Vicinity protocol used by
RSS is designed to build neighbors lists that cover the multidimensional space
as much as possible (i.e., the protocol running on a node aims to find at least
one neighbor for each level and each dimension). While the protocol succeeds in
rapidly finding sets of neighbors that cover the space, it is less efficient in regard
to zero-level neighbors. This is because the query routing algorithm has different
requirements for the connectivity in the zero-level cell. For levels greater than 0,
the algorithm needs only one neighbor for each level and dimension. However in
a zero-level cell the queries are broadcasted and the algorithm requires the nodes
to form a connected graph in order to achieve 100% delivery rate.

Based on these observations and on the simulation results that show a slower
convergence for the number of zero-level neighbors, we decided to add to the
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Figure 15: Total number of neighbors discovered by the nodes with the original
RSS protocol.

RSS a new Vicinity-based protocol layer that is dedicated to finding zero-level
neighbors. This protocol aims to bring into a node’s gossip cache other nodes that
are as close as possible in the multidimensional space, giving preference to nodes
that are in the same zero-level cell.

In order to evaluate the improvements brought by the new protocol, we have
performed some simulation tests with various system sizes. We present as follows
the reconfiguration performance of a system with 10,000 nodes, in a 6-dimensions
space.

Figure 15 shows the total number of neighbors discovered in time by the nodes
with the original version of RSS, using a gossip cache of 100 items and a gossip
lengthe of 50 items. These values are greater than the typical values used in the
RSS (gossip cache 30 and gossip length 5), as we intended to evaluate whether a
larger cache size and gossip length can improve the convergence. Although we
obtained a better convergence with these values, the improvement was still not
satisfactory: it took more than 80 gossip cycles to discover a number of zero-level
neighbors that is close to the final value. Figure 16 shows the total number of
neighbors discovered with the new Vicinity protocol added, using a cache size
of 30 and a gossip length of 15. We can observe that the number of zero-level
neighbors converges in less than 20 cycles, which is a significant improvement
compared to the original version of the RSS.
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Figure 16: Total number of neighbors discovered by the nodes with the improved
RSS protocol.

Although adding a new gossip protocol to the RSS increases the communica-
tion and the storage overhead, this does not have a significant impact since the
RSS’s overhead can be considered as negligible [5].

Figures and show the query delivery rate in the two experiments, and the im-
provement brought by the new protocol is again clearly visible.

In the near future we intend to perform more simulation experiments to evalu-
ate the behavior of the new protocol during system reconfiguration, and integrate
these improvements in the RSS implementation.

3.2 RSS Self-Management

The division of the RSS space into cells has a very strong impact on the overall
RSS performance. In particular, the layout of cells strongly affects the structure of
peer connections in the RSS overlay and determines the efficiency of query rout-
ing. For example, the RSS suffers a suboptimal performance if some of the cells
contain a disproportionate number of nodes, since the search algorithm within
level-zero cells is based on flooding. On the other hand, the RSS is very efficient
at handling queries if nodes are evenly balanced between all cells in the system.
Furthermore, the query routing overhead is reduced if query ranges overlap with
cell boundaries.
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Figure 17: Delivery rate at startup with the original RSS protocol.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

de
liv

er
y

cycles

Delivery during reconfiguration

Figure 18: Delivery rate at startup with the improved RSS protocol.
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In the current RSS implementation, cell boundaries for each dimension are
manually defined in the configuration file by the system administrator. This has
a number of drawbacks. First of all, the administrator must have a global knowl-
edge about node attribute values and query ranges in order to define optimum cell
boundaries. This may be very challenging if custom dimensions are introduced to
the RSS, for example corresponding to software versions or some self-measured
metrics. Moreover, since the population of nodes in the RSS is dynamic and di-
mensions are added and removed at runtime, the administrator must continuously
update the cell boundary definitions to maintain an efficient system configuration.

These shortcomings can be addressed by adding a new RSS component that
will automatically calculate and adjust cell boundaries at runtime. In principle,
such a component should work autonomously and should not require any manual
input from the administrators. To reach this goal, the RSS nodes should monitor
the distribution of node attribute values per each dimension and the distribution
of query ranges per each dimension. Using these distributions, a privileged node
(such as a core node) can then calculate cell boundaries that evenly balance nodes
between cells and overlap with the most common query ranges. The reconfigu-
ration mechanism described in Section 3.1 can be used to spread new boundary
definitions from the priviledged node to all nodes in the system.

The following sections describe our protocol for RSS nodes that approximates
system-wide distributions of node attribute values.

3.2.1 System Model

The goal of our algorithm is to estimate, in a scalable fashion, the cumulative
distribution of an attribute A at every node in the system. Nodes are called peers
because we assume no central point of control and all nodes participate equally
in the algorithm. We assume the peers are organised in a P2P overlay where each
peer maintains links to a small number of other nodes in the systems called its
neighbours. The set of neighbours of a peer changes over time, as peers exchange
neighbour lists to obtain robust connectivity [11, 25].

The cumulative distribution function (CDF) for an attribute A is defined as a
function F : R → R such that F (x) is equal to the fraction of nodes that have a
value for A at or below x

F (x) =
1

N

∣∣∣{p : A(p) ≤ x}
∣∣∣

where N denotes the system size.
In order to approximate F , we estimate the function at a set of discrete points,

keeping the results in a data structure that is similar to a cumulative histogram.
Specifically, we define a sequence of λ elements, called H, where the i’th element,
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H(i), contains a pair (ti, fi) representing the fraction of peers fi that have a value
for A at or below the threshold ti

fi =
1

N

∣∣∣{p : A(p) ≤ ti}
∣∣∣

The thresholds can be chosen arbitrarily within the attribute domain. Each element
corresponds to a single CDF value, since F (ti) = fi for i ∈ [0, λ). Hence, the
CDF function can be approximated by interpolating the points of H. We discuss
in the next section how to efficiently and accurately obtain the value of F at the
points in H.

We measure the CDF approximation accuracy using two classical metrics. The
Kolmogorov-Smirnoff (or maximum error) metric defines the distance between
function F and its approximation Fp at node p as

sup
x

|F (x)− Fp(x)|

Given that the attribute space in our system is discrete, we define the error of Fp

as
Errm(p) = max

min≤i≤max
|F (i)− Fp(i)|

Since different peers in the overlay can generate slightly different distribution
estimations, we calculate the corresponding aggregate of these metrics over all
peers

Errm = max
1≤p≤N

Errm(p)

This error metric provides an upper bound on the approximation error of any peer
in the system.

While the maximum error metric is useful to bound the error that any peer
observes, this bound is determined by a single point discrepancy between F and
Fp. Hence, it is quite sensitive to noise. A common approach to summarise the
error contributed by all points calculates the area between the two curves

∫

x

|F (x)− Fp(x)| dx

In the discrete case, this metric corresponds to a sum of |F (x) − Fp(x)| over all
attribute values. We use the average vertical distance between F and Fp to create
a comparable error measure to Errm(p)

Erra(p) =
max∑

x=min

|F (x)− Fp(x)|
max−min

Again, we calculate an aggregate of these metrics across all peers

Erra = avg
1≤p≤N

Erra(p)
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3.2.2 Calculating Cell Boundaries

In order to calculate cell boundaries, RSS nodes need to estimate attribute CDFs
for each dimension. The number of cells per dimension is equal to 2l, where l
is the nesting level, i.e., the number of recursive divisions of the attribute space.
Given an attribute CDF F for dimension d, cell boundary i is defined as value
Bound(d, i) such that

F (Bound(d, i)) =
i

2l

where 1 < i < 2l. This way, the boundaries divide the attribute space into 2l cells
with equal numbers of attribute values.

3.2.3 CDF Approximation Algorithm

The CDF approximation algorithm is based on periodic gossip rounds, executed
at the same rate by all nodes, where neighbouring nodes exchange information.
A sequence of several gossip rounds, called an aggregation instance, generates a
new CDF approximation at all nodes in the system. Nodes occasionally initiate
new aggregation instances in order to improve the CDF estimation accuracy and
to handle system churn.

Each aggregation instance is started by a probabilistically chosen node, which
selects a set of ti thresholds and epidemically spreads the information about the
new instance and the thresholds to other nodes using periodic gossip. Next, the
nodes run an averaging protocol [13] which estimates the corresponding CDF
values. In order to calculate the fraction fi of nodes that have attribute values
below (or at) ti, a peer p enters the averaging protocol with a value of 1 if A(p) ≤
ti, and 0 otherwise. Through a sequence of gossip exchanges, the nodes estimate
the mean of all the introduced values, which is by definition is equal to fi. The
estimation accuracy increases exponentially with time, and after a fixed number
of rounds, all nodes update their CDF estimations and terminate the aggregation
instance.

Figure 19 shows the pseudocode for our algorithm.

Starting an Aggregation Instance We associate each aggregation instance with
a unique instance identifier id. The instances may overlap in time, and thus a
peer may participate in multiple independent instances simultaneously. Since the
instances are executed in isolation from each other, we simplify the algorithm
description and assume only one running aggregation instance.

Any peer in the system may start a new aggregation instance. To prevent
the system from being overwhelmed by new instances, a peer should start a new
instance with probability Ps per round calculated as 1

NpR . The value of Np is the
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1: // Executed by a probabilistically selected node at the beginning of an instance
2: StartInstance(p):
3: {ti}← select λ interpolation points
4: Hp ← {(ti, fi) | fi = 1 iff A(p) ≤ ti}

6: // Run by each node in each round
7: Round(p):
8: q ← select random neighbour
9: send (Req, Hp) to q

10: receive (Resp, Hq) from q
11: Merge(Hq)
12: while round has not finished do
13: receive (Req, Hn) from n
14: send (Resp, Hn) to n
15: Merge(Hn)
16: end while

17: Merge(Hq):
18: if Hq $= ∅ then
19: let Hq = {(ti, fi)}
20: if Hp = ∅ then
21: Hp ← {(ti, f ′i) | f ′i = 1 iff A(p) ≤ ti}
22: end if
23: Hp ← {(ti, fi+f ′i

2 )}
24: end if

Figure 19: Aggregation algorithm at peer p. For simplicity, the system size esti-
mation and time-to-live termination mechanisms are not shown. The Hp variable
is initialised with ∅ at all peers.
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current estimation of N at peer p generated in a previous aggregation instance
(nodes joining the system are bootstrapped by their initial neighbours), and R is
the system constant that regulates the frequency of new aggregation instances. In
a stable state, with a steady number of peers in the system, a new aggregation
instance should be created on average with frequency 1

R rounds.
For each aggregation instance, peer p stores a set of interpolation points Hp,

described previously, and a weight variable wp, which it uses to estimate the sys-
tem size. In order to start a new instance, peer p selects a set of threshold values
ti using the SELECTPOINTS procedure described later, generates an initial set of
interpolation points Hp = {(ti, fi) | i ∈ [0, λ), fi = 1 if A(p) ≤ ti; 0 otherwise}
and sets its weight wp to one.

Joining an Aggregation Instance In every round, each peer contacts one of its
neighbours for a gossip exchange in the ROUND procedure. A peer also accepts
any connections from other peers (not necessarily its neighbours) for exchanges.
During an exchange between peers p and q, peer p sends Hp and wp to q and
peer q replies with Hq and wq. Both peers then merge the received values in the
MERGEGOSSIP procedure.

The MERGEGOSSIP procedure at peer p has three cases. If q does not par-
ticipate in the aggregation instance yet, it sends an empty Hq to p, and p simply
ignores the gossip exchange. Otherwise, if p has an empty Hp set, it joins the
instance by setting its weight wp to zero and creating an its initial set of interpo-
lation points Hp = {(ti, fi) | i ∈ [0, λ), fi = 1 if A(p) ≤ ti; 0 otherwise}. Note
that p uses the thresholds ti obtained from q to initialise Hp so that all nodes par-
ticipating in this aggregation instance use identical interpolation point definitions
as assigned by the peer that started the instance. Finally, peer p averages the wp

and wq weights and merges Hp and Hq by averaging the corresponding fi values.
In a push-pull gossip protocol – where both peers exchange information –

every peer in the system joins an aggregation instance with very high probability
in just a few rounds. Note that during any merge, the sum of all weights for the
instance remains one, while the variance between peers is reduced. Similarly, the
fi values in the CDF approximations H approach 1/ni where ni is the number
of peers with A(p) ≤ ti. As the peers exchange and merge their H sets and w
weights, they quickly approximate the desired CDF and the system size.

Terminating an Aggregation Instance Every instance is associated with a time-
to-live counter, which is reduced by one per round at each peer. For simplicity,
this mechanism is not shown in Figure 19. When an instance ends, each peer p
updates its estimation of the number of nodes in the system Np = 1

wp
and approx-

imates the whole attribute CDF by interpolating the points of Hp. We use simple

47



linear regression between each consecutive pair of points to obtain Fp, but more
complex approaches are possible. Finally, each peer deletes its Hp set and stops
participating in the aggregation instance.

Extreme CDF Values So far, for simplicity we have ignored two special points
in any approximation: the first and last. Our algorithm finds the minimum and
maximum attribute values to use in later aggregation instances. In order to dis-
cover these values, both are added to H and treated specially. When merging
tuples, the corresponding minimum or maximum is chosen. With this simple ad-
dition, all nodes quickly converge on both values.

Multiple Attribute Values per Node The aggregation algorithm can be easily
extended to handle cases where individual nodes are allowed to have multiple
attribute values. For example, to estimate the distribution of file sizes at all nodes
in the system each node contributes its set of file sizes. In this case, we define
A(p) ⊂ A as the set of values for attribute A at peer p and A as the set of all
attribute values at all nodes in the system. The CDF for attribute A is defined as
function F : R → R such that

F (x) =

∣∣∣{a ∈ A : a ≤ x}
∣∣∣

|A|

As previously, the CDF is approximated by calculating the value for F in a set
of discrete points (ti, fi) where F (ti) = fi. The ti thresholds are generated by
MinMax (or one of the other heuristics) and disseminated to other nodes by gos-
sipping. In order to calculate fi, nodes generate two values using the averaging
algorithm. First, each node p calculates avgi – the average number of attribute
values below ti per node – by contributing |{a ∈ A(p) : a ≤ ti}| to the averaging
algorithm. Second, each node p calculates avg – the average number of attributes
per node – by contributing |A(p)| to the averaging algorithm. Note that avg is
independent of i and can be calculated once for all the CDF points. The fi value
is then given as fi = avgi

avg .

3.2.4 Interpolation Point Selection

When starting a new aggregation instance, each peer needs to decide on the place-
ment of the interpolations points in H. Initially a node may have no prior knowl-
edge about the attribute distribution. The simplest approach in this case is to
spread the interpolation points at uniform intervals within the attribute domain.
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Figure 20: Interpolation point selection using HCut. The gray curve represents
F– the true CDF. The black line represents Hp – the previous CDF interpolation
at p.

However, the distributions of node characteristics in large-scale distributed sys-
tems are often highly skewed [2], resulting in a poor approximation using uni-
form intervals. An alternative consists of using attribute values found in a subset
of neighbours of the initiating node.

Once the system has a rough estimate of the attribute distribution, it can use
this knowledge to further refine the selection of interpolation points in future ag-
gregation instances and to reduce the approximation error in the estimated CDF.
Different selection algorithms may be used depending on the evaluation metric
that the application tries to optimise. We discuss different refinement techniques
in the rest of this section.

Minimising the Maximum Error One of the simplest bin selection heuristics
to reduce Errm(p) which we call HCut, chooses the interpolation points for a new
aggregation instance such that they divide the image of Hp into (λ + 1) equal size
quantiles. Since Errm(p) is determined by the maximum vertical distance between
interpolation points, this heuristic attempts to limit the maximum error to 1

λ+1 ,
assuming the CDF does not change significantly between aggregation instances.
Figure 20 illustrates the execution of the HCut algorithm. The interpolation points
for the next aggregation instance (t1, t2, t3) correspond to 25%, 50%, and 75%
quantiles.

The HCut algorithm is quite efficient at approximating continuous, smooth
CDFs. However, in many systems the number of existing attribute values is small.
Moreover, for many common node properties, large numbers of nodes have iden-
tical or very similar attribute values. For example, many PCs have 512 MB, 1 GB,
or 2 GB of RAM, but relatively few current machines have an amount of RAM
that is between these three values. The CDFs of such attributes are step functions
that are poorly approximated by HCut.
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1: SelectPoints(H):
2: Hold ← H
3: loop
4: find n that maximises |fn − fn−1| in H
5: find m that minimises |fm+1 − fm−1| in Hold

6: if |fn − fn−1| > |fm+1 − fm−1| then
7: remove point (tm, fm) from H and Hold

8: add point ( tn+tn−1

2 , fn+fn−1

2 ) to H
9: else

10: return H
11: end if
12: end loop

Figure 21: MinMax interpolation point selection algorithm. The algorithm it-
eratively attempts to split the widest gap while removing the midpoint from the
narrowest cluster of three points.

To approximate discontinuous CDFs, we propose MinMax – a heuristic that
attempts to identify and approximate the steps in these CDFs. Figure 21 shows
the pseudocode for MinMax. Instead of dividing the space into even quantiles like
HCut, MinMax iteratively finds the farthest two consecutive interpolation points
(by vertical distance) in the previous set of interpolation points Hold, denoted n
and n−1, and the closest three interpolation points (again, by vertical distance) in
H, denoted m− 1, m, and m + 1. If the two farthest points are farther apart than
the closest three, point midpoint m of the closest three is removed from both H
and Hold, and a new point is added to H at the new, interpolated midpoint between
n and n−1. When no points satisfy the condition, the thresholds in H are returned
as the output of the algorithm.

A sample MinMax step is graphically illustrated in Figure 22. MinMax changes
the interpolation points only if it is expecting to reduce the interpolation error. By
iteratively splitting the steepest fragments in the interpolated curve over multiple
aggregation instances, MinMax efficiently identifies steps in the CDF.

Minimising the Average Error The HCut and MinMax heuristics attempt to
minimise the maximum vertical distance measured by Errm(p). However, Erra(p)
depends upon the area between the CDF and the interpolation. To reduce the area,
we consider the LCut heuristic that selects the interpolation points based on their
Euclidean distance instead of vertical distance.

Figure 23 shows a sample execution of the LCut heuristic. In order to decide
on the interpolation point placement, peer p first calculates the length of the Hp
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Figure 22: Interpolation point selection using MinMax. The distance between min
and t1 is less than t1 and t3. We thus assume that the first segment contributes more
to the average error than the second. Moving the midpoint of the first segment to
the second at point t2 is then likely to reduce the average error Erra(p).

Figure 23: Interpolation point selection using LCut. Points {t1, t2, t3} are chosen
to divide equally the Euclidean distance along the previous approximation H.

linear interpolation curve for the previous aggregation instance. Then, p divides
the Hp curve into λ equal length (by Euclidean distance) segments to determine
the placement of new points. Note that the horizontal axis is scaled by max−min
in order to equalise the horizontal and vertical coordinate ranges. As shown later
in Section 3.2.6, compared with HCut and MinMax, LCut achieves lower average
interpolation error Erra, but suffers from higher maximum error Errm.

3.2.5 Dynamic Confidence Estimation

Our algorithm has the additional property that it allows each node to estimate
its own CDF approximation accuracy. This can be used to dynamically tune the
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algorithm parameters – such as the number of interpolation points and the number
of executed instances – according to application-specific accuracy requirements.

The accuracy estimation is based on the fact that nodes are able to estimate
the CDF value very accurately at the points of H. To estimate the accuracy of the
approximation, each peer p generates an additional set of verification points Vp

similar to the interpolation points Hp, where each element in Vp is a pair (ti, fi)
such that F (ti) = fi. The extra Vp points are added to aggregation algorithm to
be gossipped and merged along with the original Hp points.

The ti thresholds for the verification points are independently chosen by each
node that initiates a new aggregation instance. Their selection depends on the
selected error metric. For example, in order to estimate the average CDF approx-
imation accuracy (defined by the Erra(p) metric), the ti thresholds are selected
uniformly between the attribute minimum and maximum. At the end of an in-
stance, each peer p estimates the accuracy of its CDF approximation Fp as

Err′a(p) = avg
i<|Vp|

|Fp(ti)− fi|

The maximum approximation error Errm(p) is generally more difficult to es-
timate compared to Erra(p) since it is determined by a single point in the CDF. In
order to estimate Errm(p), a peer q that starts a new aggregation instance selects
the verification points Vq based on its current CDF interpolation. Specifically, the
Vq points are inserted between the Hq points by iteratively dividing the farthest
two points in Hq by vertical distance. This way, peer q attempts to find the at-
tribute values at which the true CDF and the interpolated curve most differ. When
an instance ends, each peer p estimates its approximation accuracy as

Err′m(p) = max
i<|Vp|

|Fp(ti)− fi|

3.2.6 Performance Evaluation

We evaluate our algorithms in PeerSim, a simulator for peer-to-peer systems [14].
Using PeerSim allows us to evaluate systems with 100,000 nodes, which would
be infeasible using a real-world deployment. Unless specified otherwise, all eval-
uations are based on 100,000 nodes and λ = 50 interpolation points.

We did not use a synthetic distribution of attribute values. Synthetic distri-
butions are typically smooth and therefore easier to approximate. Our evalua-
tion instead uses real-world data where skew and discontinuities occur. Specifi-
cally, we use host traces from the BOINC volunteer computing project [2]. For
each machine that participated in BOINC in 2008, we extract the following four
attributes: measured CPU performance in FLOPS, measured downstream band-
width, amount of installed memory, and amount of installed disk space. We fil-
tered out samples from the trace that result from obviously faulty readings (for
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Figure 25: Approximation accuracy over one aggregation instance (RAM).

example, a machine with a bandwidth capacity above 1031 bps or one with a nega-
tive amount of memory). Figure 24 shows the actual CDFs of these four attributes.
The CPU and bandwidth attributes have smooth distributions, while the RAM and
available disk attributes have much more skewed distributions. Our evaluation
demonstrates that skewed distributions are harder to estimate accurately.

We compare our aggregation algorithm with two other CDF estimation ap-
proaches: the histogram-based EquiDepth heuristic [10] and random sampling [9].
In the latter approach we construct an attribute CDF based on a random subset of
attribute values drawn from the system. For each algorithm, we measure the max-
imum approximation error Errm and the average approximation error Erra.

CDF estimation accuracy Our aggregation algorithm achieves a very accurate
approximation of the CDF at the interpolation points. Figure 25 shows the max-
imum and average approximation error over all peers measured at each protocol
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Figure 26: Approximation accuracy in EquiDepth (RAM).

round. We compare the maximum and average error at the H interpolation points
with the Errm maximum and Erra average error over the entire CDF domain. For
clarity, only the RAM attribute is displayed – the algorithm generates consistent
results for all other attributes. During the first few rounds of the experiment, not
all nodes have joined the aggregation instance and the error is equal to the maxi-
mum value of one. However, starting from round 10, the error at the interpolation
points decreases at an almost perfectly exponential rate and quickly becomes neg-
ligible. After 70 rounds it reaches the level of hardware rounding errors. Since all
attributes show similar results in our evaluation, we consider 25 rounds sufficient
to accurately calculate the CDF at the interpolation points. The standard deviation
of our error metrics across all system nodes remains below 10−5, and hence, in
a single aggregation instance all peers generate nearly identical CDF approxima-
tions. At the same time, the Errm and Erra error over the entire CDF domain
does not decrease below a few percent due to the interpolation error at points out-
side of H. In order to reduce the interpolation error, nodes need to either add
new points to H or select a new set of interpolation points that better fits the CDF
curve.

For comparison, we implemented the EquiDepth approach and show the dif-
ferent trends in error measurements in Figure 26. For error measurements across
the entire CDF, both algorithms have errors in the same magnitude (8% max for
ours and 10% max for EquiDepth). However, the approximation error over time
at the selected bins does not improve in the EquiDepth approach. This approach
suffers a significant approximation error even at selected histogram bins due to
sample duplication [10]. Our algorithm instead leverages the decreasing error
over time at the selected points both to refine the selection of points in new ag-
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Figure 27: Approximation accuracy of MinMax using different bootstrap ap-
proaches.

gregation instances to reduce maximum and average errors across the entire CDF
and to dynamically gauge the accuracy of own CDF estimation.

Initial interpolation point selection While a single instance of our aggregation
protocol very accurately estimates the attribute CDF at the interpolation points,
we present several techniques to refine the set of interpolation points over multi-
ple aggregation instances. The selection of the interpolation points significantly
affects the interpolation error over the entire CDF, and different refinement tech-
niques are presented to minimise the different measures of error that we present.
However, all of the refinement techniques use a previous estimate of the CDF to
generate a new, refined set of interpolation points. This subsection describes how
the algorithms choose the initial set of points.

As an example, in Figure 27 we consider two approaches to bootstrapping the
first aggregation instance of the MinMax algorithm: assigning interpolation points
uniformly between the minimum and maximum attribute value calculated using
an aggregation instance (labelled “Uniform Points”) and using a random subset
of the attribute values of the peer’s neighbours in the P2P overlay (“Neighbour-
Based Points”). The results clearly demonstrate that using neighbour attribute
values significantly improves the algorithm’s convergence. We believe that since
the MinMax algorithm is trying to spread the interpolation points according to the
distribution of the values, taking the initial interpolation points from neighbours
bootstraps the algorithm with points already from the desired distribution. Fur-
ther, we also see that MinMax converges much faster for smoother CDFs (CPU
and bandwidth) than for the heavily-skewed CDFs (RAM and disk size) where
the precise selection of interpolation points is crucial for overall accuracy. Since
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similar results hold for the other refinement algorithms, we bootstrap the first ag-
gregation instance in the rest of the evaluation using the attribute values of a node’s
neighbours.

Convergence over multiple instances In this subsection, we compare our ap-
proximation techniques with EquiDepth and random sampling over multiple ag-
gregation instances. After only three instances, our algorithms can obtain an order
of magnitude better average error and several times better maximum error than
EquiDepth.

All our refinement algorithms manage to effectively reduce the maximum and
average approximation error in Figure 28. For the Errm measure, all algorithms
achieve good results for smooth distributions (CPU), but for heavily-skewed CDFs
(RAM), MinMax significantly outperforms the others. We thus focus on the Min-
Max algorithm when minimising Errm in the remaining experiments. For the
Erra metric, LCut achieves significantly lower error after 3 instances than any
other algorithm by an order of magnitude. We similarly focus on LCut when
minimising Erra in later experiments.

The performance differences of MinMax and LCut for each error metric demon-
strates the difficulty of optimising for both metrics simultaneously. Although LCut
performs best for Erra and indeed for Errm for smooth CDFs, it has the worst
performance for Errm for skewed CDFs where precise interpolation selection is
most important. It remains as future work whether a single heuristic can signifi-
cantly reduce both error metrics for diverse CDF curves.

The results for our algorithms are compared with the approximation error gen-
erated by EquiDepth and random sampling in figures 29 and 30, respectively. We
execute the EquiDepth phases with the same frequency and duration as aggrega-
tion instances to make as fair a comparison as possible. Since EquiDepth does not
refine its histogram bins based on CDF approximations from previous phases, it
generates the same approximation error in every phase. Consequently, EquiDepth
suffers a few times higher maximum error compared to MinMax (particularly for
highly-skewed distributions), and at least an order of magnitude higher average
error compared to LCut.

The accuracy of CDF approximation using random sampling depends on the
generated sample size. In the 100,000-node system we use in our evaluations,
about 1,000 to 10,000 random samples are required to achieve an accuracy similar
to that of MinMax or LCut. As discussed later in this paper, the random sampling
approach in [9] would generate in this case between 1,000 to 10,000 messages
per node – a prohibitive cost compared to our approach. Finally, we note that
the error measurements for random sampling are higher for heavily-skewed CDFs
compared to smooth CDFs.
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Figure 28: Comparison between HCut, MinMax, and LCut.
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Figure 29: Approximation error in EquiDepth over multiple phases.
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Figure 30: Approximation error for random sampling.
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Figure 31: Influence of the number of interpolation points on aggregation accu-
racy.

Influence of the number of interpolation points One way to improve distri-
bution estimation accuracy is to increase the number of interpolation points. This
section explores the tradeoff between the increased accuracy one can derive from
high number of interpolation points and the implied communication costs.

Figure 31 shows the Errm and Erra accuracy after 4 instances (phases) in our
aggregation algorithm and the EquiDepth algorithm when using between 10 and
100 interpolation points (bins). As one would expect, more interpolation points
bring better estimation accuracy. The slight variations in the graph (in a few cases
the error increases when more interpolation points are used) can be explained by
the random component in our heuristic. As previously, EquiDepth is outperformed
by MinMax with the Errm metric and LCut with the Erra metric.

A number of 50 points provides an acceptable accuracy for many possible ap-
plications: an Errm maximum distance of 2%, as obtained with MinMax, or an
Erra average error 0.1%, as obtained with LCut. However, for the applications
that need higher accuracy, increasing the number of points does not incur a large
performance penalty: when adding 10 extra points, the size of the messages ex-
changed among the peers increases by approximately 160 bytes; for the current
capacities of the usual network links, this is almost negligible. Furthermore, if the
CDF does not change significantly over time, nodes can combine interpolation
points obtained in multiple aggregation instances in order to reduce the overall
interpolation error.

Impact of churn We model churn by randomly replacing a fixed fraction of
nodes in the overlay with new nodes at each simulation round. Since changes in
the attribute distribution are entirely application specific, we maintain a constant
attribute CDF over the course of each experiment. We set a churn rate based on
measurements on existing P2P systems [23]. Assuming a gossip periodicity of
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Figure 32: Approximation accuracy in the presence of churn, for a single instance
(RAM).

one second and a mean session duration of 15 minutes, approximately 0.1% of
nodes leave the system per round and rejoin with a different attribute value drawn
from the same distribution.

Figure 32(a) shows the maximum and average CDF approximation error in
one instance of our algorithm in a system with churn. The evaluation metrics do
not include nodes that join the system during the instance execution, since their
CDF approximations are undefined. After an initial phase, when the instance
is propagated to all nodes, the approximation error starts to gradually decrease.
Since some nodes leave the system before their fi values are disseminated and
averaged, the CDF approximation error at interpolation points does not converge
to zero. However, the obtained accuracy is on the order of 0.01% and is clearly
sufficient to approximate the CDF through interpolation.

For completeness, figure 32(b) shows the approximation error produced by an
EquiDepth phase in the same system setup. EquiDepth is not significantly affected
by churn, but as previously, the heuristic is not able to reduce the maximum ap-
proximation error below 10% (and 1% for the average error) even at the selected
histogram bins.

Figure 33 shows the maximum and average approximation error incurred by
our aggregation algorithm and EquiDepth after 8 protocol instances (phases). In
this experiment, joining nodes are included in the evaluation metrics, since they
receive initial CDF approximations – generated in the previous aggregation in-
stances – from their neighbours. Moreover, joining nodes ignore aggregation in-
stances (phases in EquiDepth) that had started before these nodes entered the sys-
tem in order not to distort the results from already running aggregation instances.

All algorithms show a very high resilience to churn, which starts to signifi-
cantly decrease the approximation accuracy only at rates of 1% nodes per gossip
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Figure 33: Impact of churn on approximation accuracy.
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Figure 34: RAM distribution approximation error in systems with churn.

round (i.e., 1% per second). This rate is 10 times higher than the levels observed
in [23].

We also observe that churn reduces the algorithm’s convergence speed. This
is caused by fact that nodes joining the system do not participate in current aggre-
gation instances, but instead copy the CDF estimations obtained by other nodes
in previous instances. For extreme churn rates, very few nodes (if any) complete
a full aggregation instance and the results generated by aggregation become inac-
curate, as shown in Figure 34.

Dynamic confidence estimation As described in section 3.2.5, nodes can use
the aggregation framework to assess the accuracy of their own CDF approxima-
tions. We evaluate the accuracy estimation algorithms by computing the average
difference between the nodes’ assessment of an error metric and the actual value
for that error metric. Given the true CDF approximation accuracy Erra(p) at node
p, and p’s own estimation of its accuracy Err′a(p), we define the error in accuracy
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Figure 35: Accuracy estimation error for MinMax.

estimation at node p as
|Erra(p)− Err′a(p)|

Erra(p)

Similarly, the error in Errm(p) estimation at node p is defined as

|Errm(p)− Err′m(p)|
Errm(p)

Figure 35 shows the accuracy estimation results for the two considered met-
rics. Using 20 verification points, nodes can estimate their own average approxi-
mation accuracy with a 10% error. This adds a 40% traffic overhead to our CDF
approximation algorithm. The error drops under 5% if a sufficient number of in-
terpolation points is used. As expected, more verification points are required to
obtain an accurate estimation of the Errm maximum error. However, the exper-
iment shows that even this difficult metric can be roughly estimated using our
aggregation framework.

Cost evaluation An important objective in designing the aggregation algorithm
is to achieve a low communication cost. The network traffic exchanged by any
node is proportional to the number of interpolation points (λ) and the number of
gossip rounds. For 50 interpolation points, the size of a gossip message is approx-
imately 800 bytes. At each gossip cycle each node issues exactly one gossip and
receives on average one gossip. Each gossip requires sending and receiving one
message. Therefore, to estimate an attribute CDF with λ = 50 and 25 rounds,
each peer will send, on average, about 40 kB of data (50 messages), and receive
another 40 kB (50 messages). Since three aggregation instances are sufficient for
MinMax and LCut to converge, an accurate CDF approximation can be obtained
by sending 120 kB of data (150 messages) per node. This cost does not depend
on the system size.
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The time required to generate a CDF estimation depends on the gossip peri-
odicity. If we consider a periodicity of 1 second, then a CDF can be obtained in
about 25 seconds using an average upstream bandwidth of about 1.6 kB/s, and a
downstream bandwidth with a similar value. The CPU, memory, and topology
maintenance costs are negligible.

The costs of EquiDepth and our aggregation algorithm are very similar. Both
algorithms are based on a push-pull gossip exchange over a random overlay and
hence generate the same number of messages. Moreover, since we use 50 his-
togram bins in EquiDepth and 50 interpolation points in aggregation, the message
sizes are almost identical in both approaches. The only advantage of EquiDepth
over our algorithm is a better convergence speed, since EquiDepth does not im-
prove its results between consecutive phases.

In random sampling, about 1,000 to 10,000 samples must be obtained by a
node in a 100,000-node system in order to achieve a CDF approximation accuracy
comparable to that of MinMax or LCut. Using random walks [9], this requires
generating between 1,000 and 10,000 messages per node – an order of magnitude
more compared to our approach.

3.2.7 Related Work

The task of data aggregation, or synopsis construction, has been well-studied in
the past in the areas of sensor networks [1, 18] and distributed databases [24].
However, most of the proposed algorithms are reactive. Each time a node re-
quests aggregation, a dissemination tree (or weighted graph) is constructed be-
tween nodes in order to collect the required data from the system. Such graphs
are neither robust to failures of nodes near the sink nor do they efficiently dissemi-
nate the result to all nodes. The focus of this paper is instead to collect aggregation
information at all nodes while evenly distributing the overhead using a symmetric
algorithm.

Our approach is based on gossip protocols, which are renowned for their scal-
ability, robustness, and low cost [16, 13]. These protocols have been previously
used to approximate simple system properties such as minimum, maximum, and
mean values of an attribute. We extend these algorithms by adding mechanisms
that allow nodes to approximate system-wide distributions and to assess and im-
prove the accuracy of these approximations.

Several existing algorithms allow nodes to estimate their own ranks and slices [17,
12, 8]. While these solutions incur less overhead, they provide more limited infor-
mation than a distribution estimation. For example, they do not enable nodes to
estimate whether an attribute distribution is skewed, imbalanced, or contains out-
liers: node ranks by definition are always assigned between 1 and N (system size),
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regardless of the actual attribute distribution. Such algorithms are not sufficient to
determine important RSS properties.

The problem of outlier detection is addressed using gossip by Eyal et al. [7].
The algorithm gossips synopses of clusters and outliers to enable both the removal
of the outliers and the discovery of cluster formation. However, the cluster syn-
opses do not estimate the full distribution of node parameters, and our algorithm
is also well-suited to other distributions without clusters.

A simple way to estimate an attribute distribution is to generate a random
sample of attribute values [9, 11]. However, as we have shown in the evaluation
section, such an approach is extremely inefficient compared to our algorithm.

Haridasan et al. estimate the distribution of an attribute value by gossipping
synopses of equi-depth histograms [10]. Using equi-depth bins, the system con-
verges towards an estimation accuracy around 7% in the absence of churn, while
under the same conditions our system obtains an order of magnitude improve-
ment. Furthermore, our algorithm also provides a useful estimation of its own
accuracy to enable a tradeoff of accuracy for lower communication overhead.

3.2.8 Conclusions

This section shows how to efficiently and accurately estimate the statistical distri-
bution of an attribute belonging to nodes in a peer-to-peer overlay. Our algorithm
has a low cost in the order of 1.6 kB/s traffic over 75 seconds, and generates
approximations within an average error of 0.05% and a maximum error of 2%.
Further, the algorithm can estimate its own accuracy, and due to its use of gossip
techniques, is quite resilient to churn – obtaining roughly the same average error
for churn rates up to 1% per second.

In the remaining duration of the XtreemOS project, we will apply this tech-
nique to the dynamic estimation of node attribute distribution within the RSS. This
will allow the RSS to self-manage internal configuration parameters such as the
definition of cell boundaries, and will result in better overall performance.
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4 Conclusions
In this document we have described the improvements made to the SRDS system
and its RSS component in order to increase the overall usability, reliability, perfor-
mance and scalability of the XtreemOS platform. We have discussed architectural
changes of the SRDS service, and evaluated those changes with experiments run-
ning on platforms of up to 1 thousand real nodes and 100 thousand simulated
nodes. Tests show that the added configurability and the option to change the con-
figuration dynamically at run-time have been implemented within the RSS without
harming the scalability and performance of the service, and that a self-managing
behaviour of the RSS is feasible and will improve the efficiency and reliability of
the XtreemOS resource location.

Similarly, the architectural changes in the SRDS have been evaluated by sim-
ulation on top of the Grid’5000/Aladdin platform. Accordingly, new features that
have been added to the SRDS interface in order to allow a better exploitation of
the discovery service by other XtreemOS modules, they do not impair the SRDS
performance on large networks. This has been experimentally verified for the
AEM and JDS services, measuring the service time of resource and Job Directory
queries in large overlays. New functionalities like the generic query engine and
the neighborhood query support will increase the integration of the SRDS and the
highly available services within the XtreemOS platform.

Several of the documented improvements concerning both the SRDS and the
RSS are also relevant as academic results, some of them having been already
published. As a matter of fact, changes and additions described in the document
are already part of the the current XtreemOS public release, or are currently being
integrated in the upcoming public release.
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