
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Reproducible evaluation of distributed servers
D3.2.6

Due date of deliverable: November 30th, 2008
Actual submission date: November 30th, 2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.2
Task number: T3.2.1

Responsible institution: VUA
Editor & and editor’s address: Guillaume Pierre

VU University Amsterdam
Dept of Comp. Science

de Boelelaan 1081a
1081HV Amsterdam

The Netherlands

Version 1.2 / Last edited by Jeffrey Napper / December 5th, 2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 10/10/2008 Guillaume Pierre VUA Initial outline
0.2 13/10/2008 Guillaume Pierre VUA Membership protocol
0.3 20/10/2008 Jeffrey Napper VUA Overview and evaluation
1.0 28/10/2008 Guillaume Pierre VUA Wrap-up for internal review
1.1 4/12/2008 Jeffrey Napper VUA Edited according to comments from Yvon
1.2 5/12/2008 Jeffrey Napper VUA Edited according to comments from Gregor

Reviewers:
Yvon Jégou (INRIA/IRISA) and Gregor Pipan (XLAB).

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T3.2.1 Design and implementation of distributed servers VUA∗

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

D3.2.6 IST-033576

Executive Summary
Distributed Servers provide an abstraction that allows a group of server processes
to appear as a single entity to its clients. This deliverable discusses the cur-
rent state of development of Distributed Servers, and presents an in-depth func-
tional and non-functional evaluation of the platform. First, we made significant
progress towards porting Distributed Servers to run on recent Linux kernel ver-
sions, namely 2.6.25. Second, we ported the Gecko library interface to Distributed
Servers to Java so that Java programs could make use of Distributed Servers
functionality. This was important in particular for the integration of Distributed
Servers with Virtual Nodes. Third, we developed a membership protocol to re-
lieve application programmers from this difficult aspect of Distributed Servers
management.

Our evaluation and work integrating Distributed Servers with Virtual Nodes [9]
shows that Distributed Servers are both performant and mature. Performance eval-
uations show that Distributed Serverss are efficient: they allow for direct commu-
nication between a client and the server node that is currently serving it. Handoff
times, as perceived by the client, can be reduced to an acceptably low value. Fur-
thermore, we foresee no scalability bottleneck when using Distributed Servers to
serve massive numbers of connections.

Finally, from our evaluation we conclude that Distributed Servers are mature
enough platform to be integrated into the XtreemOS distribution (as soon as the
XtreemOS kernel version is upgraded from version 2.6.20 to 2.6.25).

1/16 XtreemOS–Integrated Project

IST-033576 D3.2.6

Contents
1 Introduction 3

2 Overview 3
2.1 Port to 2.6.25 Linux kernel . 4
2.2 Interface using Java . 5
2.3 Membership protocol . 5

2.3.1 Contact node election protocol 6
2.3.2 Membership protocol of the snodes 7
2.3.3 Current status . 8

3 Reproducible Evaluation 8
3.1 Functional evaluation . 8

3.1.1 Client-side Mobile IPv6 Support 8
3.1.2 Multiple Client Connections 9
3.1.3 Fault-tolerance . 9
3.1.4 Scalability . 10
3.1.5 Gecko Library and Java API 10

3.2 Performance Evaluation . 10
3.2.1 Server Access Latency 11
3.2.2 Handoff Time Decomposition 12
3.2.3 State Transfer Optimization 14

4 Conclusion 15

XtreemOS–Integrated Project 2/16

D3.2.6 IST-033576

1 Introduction
Work package 3.2 of the XtreemOS project aims at providing an infrastructure
that can support highly available and scalable grid services and applications,
such that these can be developed independently from underlying instances of the
XtreemOS operating system. When one builds a large-scale distributed service
made of multiple service instances, an important issue is to give its user a sim-
ple contact address where queries can be sent. This is the goal of Distributed
Servers: a distributed server is an abstraction that allows a group of server pro-
cesses to appear as a single entity to its clients. Distributed Servers aim at allowing
high-performance client-to-server communication, while being totally transparent
to the clients. The only requirement is that the clients support the Mobile IPv6
protocol.

This deliverable describes the progress made in the last year (since [8]). First,
we made significant progress towards porting Distributed Servers to run on recent
Linux kernel versions, namely 2.6.25. Second, we ported the Gecko library in-
terface [8] to Distributed Servers to Java so that Java programs could make use
of Distributed Servers functionality. This was important in particular for the in-
tegration of Distributed Servers with Virtual Nodes (see deliverable D3.2.10 on
this particular topic [9]). Finally, we developed a membership protocol to relieve
application programmers from this difficult aspect of Distributed Servers manage-
ment.

This deliverable is organized as follows. Section 2 describes the progress made
in terms of implementation. Section 3 discusses the reproducible evaluation of the
current system. Finally, Section 4 concludes.

2 Overview
Distributed Servers provide a location transparency for networked services [10].
Without modification, a client can connect to a single distributed server address
for a service that may be divided among multiple locations. The distributed server
address is simply an IPv6 [3] address provided for the network service by other
name resolution techniques such as Domain Name System (DNS). For example
using the distributed server address, a client first connects to a contact node. Sub-
sequently, a client connection may be transparently handed off —the server end-
point of the connection may be transferred—to different servers to effect load-
balancing or for client-specific processing. With the use of Mobile IPv6 (MIPv6)
route optimization [4], this handoff provides a direct connection to the new server
with corresponding network efficiencies—further data is not routed through the
contact node. This ability to migrate client connections without modification of

3/16 XtreemOS–Integrated Project

IST-033576 D3.2.6

the client depends on the implementation of Mobile IPv6, which typically sup-
ports client mobility. However, Distributed Servers inverts client mobility to pro-
vide the appearance of server mobility.

In the last year, we have further developed Distributed Servers by 1) port-
ing Distributed Servers to a recent Linux kernel, 2) adding an interface to the
Java language, and 3) implementing a membership protocol to manage both fault-
tolerance of the contact node (see also [9]) and the larger set of nodes that receive
client handoffs.

2.1 Port to 2.6.25 Linux kernel

The Distributed Servers system was originally built on Linux kernel 2.6.8 (re-
leased 2004), which had relatively unstable support for Mobile IPv6. Time marches
on, and newer kernels such as 2.6.25 now have relatively stable support for Mo-
bile IPv6 along with support for new hardware likely to be found in computational
grids. With this in mind, we began a port of Distributed Servers to the kernel re-
lease 2.6.25 purported to be the focus of the release of XtreemOS that will include
Distributed Servers. The port is largely a reimplementation as the Linux kernel
network stack has changed significantly with the incorporation of IPv6 support.

Porting Distributed Servers requires porting some support software as well.
The TCP connection passing system (TCPCP) provides migration of open sock-
ets by serializing the network stack state, which can then be transferred to a dif-
ferent node [1]. TCPCP was written for Linux kernel 2.6.11. In porting Dis-
tributed Servers, we decided to also migrate to TCPCP2 [2] written for Linux ker-
nel 2.6.15. This successor to TCPCP provides better support the for IPv6 sockets
that we migrate in the implementation of Distributed Servers. Our migration con-
sisted of modifying the Distributed Servers API to use the new API provided by
TCPCP2. We have successfully migrated to the new API provided by TCPCP2
and upgraded support for TCPCP2 to the TCP/IP implementation of Linux kernel
2.6.25. We are planning to submit our port to the maintainers of the TCPCP2
package, to be integrated into the official TCPCP2 distribution.

The remainder of our ongoing porting effort is directed to migration of the
changes to Mobile IPv6 required for Distributed Servers. Distributed Servers uses
the Mobile IPv6 implementation to hide migration of the server-side of a connec-
tion. The client-side requires no modifications, but the server-side must incorpo-
rate changes to the Mobile IPv6 layer to support migration of single connections
rather than migration of the entire host across networks. We are currently imple-
menting these changes in the user-level daemon corresponding to Mobile IPv6 for
the Linux kernel 2.6.25. Due to the significant changes from the old version for
kernel 2.6.8, the port entails significant reimplementation work.

XtreemOS–Integrated Project 4/16

D3.2.6 IST-033576

2.2 Interface using Java
Previously, we developed a library interface to Distributed Servers in C++ called
Gecko [8]. The Gecko library API provides an object-oriented interface to Dis-
tributed Servers that implements client handoff and server management (for exam-
ple, changing the contact node), but is not callable directly from Java. In support
of integration with Virtual Nodes [9], we have extended this interface using the
Java Native Interface (JNI) [5] to provide a similar API within the Java program-
ming language. JNI is both necessary and efficient to our purposes. Using JNI
allows us to leverage the Gecko library API directly from Java, eliminating sig-
nificant reimplementation of the API in the Java language. Further, the Java API
must be able to interface efficiently with TCPCP2, which provides an API in the
C language. Hence, although we are somewhat forced to use JNI, it is actually to
our long-term benefit.

Our Java interface to the Gecko library is focused primarily on fault-tolerance
integration with Virtual Nodes, providing support for client handoff and recovery
in the presence of failures of the contact node and clients’ connections. To this
end, there are two main objects in the Java framework: GeckoFramework, which
controls a similar object in the Gecko library that manages the contact node and
GSocket, which manages a client connection including failover of the connection
to a backup (primary-backup management is discussed in the next subsection).

2.3 Membership protocol
Any application using Distributed Servers needs a good control of its own mem-
bership. There are two reasons for this: first, to be operational, a distributed server
must have at all times one of its nodes designated as the “contact node.” This is
the node that receives connection requests from new incoming clients, and which
selects a node from the distributed server to treat this client. Should the current
contact node fail, it is important that another node is quickly elected as the new
contact node to take over this important responsibility. Second, to be able to hand-
off connections to other nodes of the distributed server, the contact node needs to
have an up-to-date view of the list of nodes currently present in the distributed
server.

The management of membership in any distributed system is a difficult prob-
lem. Instead of letting each application programmer be responsible for building a
new (suboptimal) implementation each time, we decided to add a standard mem-
bership protocol inside Distributed Servers.

In this protocol, nodes of a distributed server are categorized into three cate-
gories:

• One “contact node”,

5/16 XtreemOS–Integrated Project

IST-033576 D3.2.6

• A small (typically less than 5) set of “backups” ready to take over the con-
tact node’s responsibilities in case this one should fail, and

• Any number of server nodes (or “snodes”) that can simply provide the re-
quired service but are not allowed to become contact nodes themselves.

Note that this distinction is orthogonal to the actual query processing capabili-
ties of the respective classes of nodes. In Distributed Servers, any node (including
the contact node and the backup nodes) can be selected to process incoming re-
quests.

The membership protocol must provide two functionalities:

• Make sure that at most one node is elected as the contact node. There may
be transient periods during which the distributed server will not have any
contact node (right after a failure of the current contact node), but these pe-
riods should be as short as possible. It is essential that the contact node and
its backups have a perfectly consistent view of their mutual membership.
The protocol therefore relies on two-phase commit. We consider the associ-
ated cost as acceptable, since the two-phase commit need only be executed
among the contact node and its backups.

• Make sure that the contact node and all its backups have a reasonably con-
sistent view of the current list of snodes. Snodes do not need to have any
view of the group membership. They must only know who the current con-
tact node is. Determining the identity of the contact node is easy: any node
may simply send a message to the home address of the distributed server.
By definition, the current contact node will receive it and may reply with its
own identity.

It is not vital that the view of snodes membership is perfectly consistent
between all backup nodes. We can therefore use a much more lightweight
and scalable protocol there.

2.3.1 Contact node election protocol

Joining the set of backups: to join the set of backups, one must send a ‘join’
message to the current contact node that carries some form of authentication. The
contact node assigns a unique identifier to this node by incrementing a counter. It
runs a 2-phase commit protocol with all its backup nodes to inform them of the
new backup. If one backup node does not respond after a given timeout, then the
contact node considers it to be failed and retries a 2-phase commit that contains
the information about the new backup and about the failed one. Once a 2-phase
commit has succeeded, the new backup is informed that joining was successful.

XtreemOS–Integrated Project 6/16

D3.2.6 IST-033576

Backup node failure detection: the contact node does not need to proactively
detect the failure of backup nodes. These failures can be discovered later on, upon
a join operation of another backup node.

Contact node failure detection: backup nodes are ordered according to their
unique IDs. The contact node is always selected as the backup node with the
lowest ID. Each backup node monitors the liveness of its predecessor in the list
using heartbeat messages. Whenever it detects a failure, it runs a 2-phase commit
across all backup nodes to inform them of the change. Note that this also informs
the current contact node of such failures. If the failed node happens to be the
contact node, then its successor takes over the responsibility as the new contact
node.

False positive failure detection: it may happen that a backup node is wrongly
accused of having failed. In such a case, it will try to monitor its predecessor in
the list. The predecessor can then send a reply message “we consider you to have
failed, please join again.”

2.3.2 Membership protocol of the snodes

As discussed previously, we need to make sure that the contact node has a rea-
sonably up-to-date view of the snode membership, to be able to handoff incoming
connections to them. However, the correctness of the distributed server is not
compromised by slight inconsistencies there. Snodes do not need any view of
the group membership at all. They only need to know the identity of the current
contact node.

Each snode periodically sends a registration message to the contact node (con-
taining authentication information). If the snode was already known by the contact
node, nothing happens. Otherwise, the contact node adds it to its list, and sends
the update to its backups. A 2-phase commit is not necessary.

Note that periodic re-registration is not strictly necessary, and may overload
the contact node. Instead, it may be more efficient to re-register only if a snode
suspects that it has been forgotten (e.g., it has not been contacted for a given
period)

The contact node can detect the failure of snodes when a handoff to them fails.
In this case, it can simply remove the failing snode from its list and send the update
to its backups (again, no 2-phase commit is necessary).

7/16 XtreemOS–Integrated Project

IST-033576 D3.2.6

2.3.3 Current status

The membership protocol has been fully implemented, but has not yet been in-
tegrated into the Gecko library framework. This is of course in our immediate
agenda.

Authentication of newly joined nodes is currently realized using a simple pass-
word known to the whole distributed server. This is obviously not very secure, as
a disclosure of this secret may open the distributed server to accept rogue nodes
in its membership. Future versions will rely on XtreemOS certificates as a better
form of authentication.

3 Reproducible Evaluation
We evaluate Distributed Servers along two main directions: a functional evalua-
tion of the properties provided by Distributed Servers, and a performance evalua-
tion of the different components of Distributed Servers. In the rest of this section,
we describe the functional evaluation as a sequence of both advantages and dis-
advantages to using Distributed Servers. Finally, we end with an experimental
performance evaluation that provides quantitative breakdown of the overheads in-
curred in using Distributed Servers.

3.1 Functional evaluation

The functional evaluation of Distributed Servers concerns the different benefits
and limitations of using Distributed Servers.

3.1.1 Client-side Mobile IPv6 Support

Distributed Servers assume that client-side operating systems support the func-
tionality of a Mobile IPv6 (MIPv6) correspondent node. This is already true
for many popular operating systems, including Linux and Windows. However,
it might still happen that some potential service clients do not support MIPv6:
for example, when services are hosted on the grid for clients external to the grid.
While grid service running Distributed Servers can support a very large group of
MIPv6-enabled clients, the service should also be able to support a small number
of MIPv6-disabled clients.

Although client-side MIPv6 support is necessary to hand off clients among
member nodes using route optimization, it is not required to access the contact
node. MIPv6-disabled clients can therefore be supported by tunneling all their
traffic through the contact node. However, the number of MIPv6-disabled clients

XtreemOS–Integrated Project 8/16

D3.2.6 IST-033576

that are serviced simultaneously by the contact node should not be too large to
prevent the contact node from becoming a bottleneck.

3.1.2 Multiple Client Connections

Certain services might allow a client to simultaneously open multiple TCP con-
nections to the same service, for example, to retrieve different parts of the service
response in parallel. However, opening multiple TCP connections to a grid ser-
vice running Distributed Servers via a single distributed server address might lead
to problems when the server decides to hand off any of these connections. The
MIPv6 handoff updates the translation bindings maintained by the client’s MIPv6
layer. However, since MIPv6 translation affects all the traffic between the client
and the distributed server address, either all the connections of a given client must
be handed off simultaneously to the same acceptor, or none at all. This can be a
disadvantage if the service needs to handoff different connections from the client
to different server nodes.

This limitation can be alleviated if the service uses multiple distributed server
addresses. As each translation binding is associated with only one distributed
server address, it does not affect the traffic sent to other addresses. Provided that
the client-side application opens simultaneous connections to different distributed
server addresses, the service can hand off each of them just like non-parallel con-
nections. A good rule of thumb is thus that each service running Distributed
Servers should have a different distributed server address even if the services are
hosted initially at the same contact node.

3.1.3 Fault-tolerance

In a large-scale grid service deployment, any node can fail. In that case, it is the
responsibility of the application to transfer the application-level state of client con-
nections serviced by that node to some other node. Although MIPv6 enables an-
other node in the server to intercept the client traffic related to these connections,
they can no longer be serviced without such application-level state information.
Without this state information, the service may be forced to close the connection
after recovering it. Such unexpected connection closing may result in the service
appearing to be unreliable.

We address this problem with the use of another XtreemOS technology—
Virtual Nodes. The use of Distributed Servers and Virtual Nodes is described in
more detail in deliverable D.3.2.10 [9]. In brief, Virtual Nodes provide a method
to replicate the state of a server’s connections across a small number of other
service nodes. Should a server fail, a replica can try to recover the connections
based on the replicated state. Note that the service’s ability to continue servicing

9/16 XtreemOS–Integrated Project

IST-033576 D3.2.6

a given connection greatly depends on the state of that connection. For example,
it might be impossible to recover data that has been received and acknowledged
by a server node’s TCP layer after the replicated connection state was updated
for the last time. This is because the server cannot transparently force the client
to retransmit the already-acknowledged data. On the other hand, ensuring that
all data is replicated before sending an acknowledgment to the client can dra-
matically increase the latency seen by the client. Defining the tradeoff tends to
be application-specific, as applications themselves might provide some degree of
resilience to sudden service outages.

3.1.4 Scalability

The scalability of any XtreemOS service is great concern for very large grids.
Distributed Servers supports client handoff across the wide-area to support an ex-
tremely large number of clients possibly with each client experiencing multiple
handoffs to access better server locations. Unlike most server-side implementa-
tions of load-balancing, Distributed Servers can distribute load across the wide-
area while still maintaining client application transparency. The contact node ap-
pears to be the only bottleneck in the system. However, a service can combine Dis-
tributed Servers with other load-balancing approaches such as round robin DNS
to provide scalable support for many contact nodes. Round robin DNS provides
different addresses (that is, contact nodes) for the service to different clients to
effect load-balancing. With many contact nodes, we do not foresee any current
bottlenecks in the Distributed Servers service. Implementing the application logic
for the service remains a concern that is not in the scope of this document.

3.1.5 Gecko Library and Java API

Both of the supported libraries for using Distributed Servers—the Gecko library
interface and the new Java interface—provide a convenient API although the
Gecko C++ library is more complete. Client connections can be managed with
flexible distribution policies. The Gecko library API includes an object-oriented
interface to client handoff and server management and provides a proxy to allow
client distribution without modifying server. The Java API provides for recovery
of client connections between a primary and a backup. For a complete description
of the Gecko library API, please see Deliverable D3.2.2 [8].

3.2 Performance Evaluation
We evaluate the performance of Distributed Servers using a simple testbed (see
Figure 1). The core of that testbed is a NISTnet router, which connects the client

XtreemOS–Integrated Project 10/16

D3.2.6 IST-033576

IPv6 LANs

Node 1

Node 2

Home Agent 1

Home Agent 2

SS

CS1

CS2

Client

Router
NISTnet

Figure 1: Testbed topology

machine to a service infrastructure [7]. The infrastructure consists of two service
nodes located in different networks, which are connected to the NISTnet core via
their home agents.

We use the NISTnet router to emulate wide-area latencies. However, since
NISTnet is not IPv6-enabled, we established three IP6-in-IP4 tunnels (as seen in
Fig. 1): the SS tunnel controls packet transmission between the member nodes,
and the CS1 and CS2 tunnels control packet transmission between these member
nodes and the client.

The NISTnet router runs Linux 2.4.20. All the remaining machines run Linux
2.6.8.1 and MIPL-2.0-RC1, which is an open-source MIPv6 implementation for
Linux [6]. All the machines are equipped with PIII processors, with clocks vary-
ing from 450 to 700 MHz.

3.2.1 Server Access Latency

The distributed server address implementation based on tunneling provided by
MIPv6 causes the client packets to be routed through the home agent, which then
tunnels them to the contact node. The service access latency therefore consists
of two parts: the latency between the client and the home agent, and the latency
between the home agent and the contact node.

To verify this claim, we developed a simple UDP-echo application. A UDP-
echo client sends a 128-byte UDP packet to the service, which sends that packet
back. The client measures the round-trip time as the delay between sending and
receiving the packet.

We used two different configurations of the UDP-echo service. Both configu-
rations use the distributed server addresses created by Node 1. However, whereas
Node 1 belongs to the service in the first configuration, it does not in the second
one. In that case, the packets are tunneled between Home Agent 1 and Node 2.

11/16 XtreemOS–Integrated Project

IST-033576 D3.2.6

For each service configuration, we have configured NISTnet with several com-
binations of latency values. Packets transmitted through the SS tunnel were de-
layed by various latencies LatSS . Packets transmitted through the CS1 tunnel, in
turn, were delayed by various latencies LatCS1. For each pair of latencies, we
iteratively ran the UDP-echo client 100 times and calculated the average over the
reported round-trip times.

The results were very consistent. The average reported round-trip time was
2∗LatCS1+X for configuration 1, and 2∗LatCS1+2∗LatSS+Y for configuration
2, where X and Y are small additional delays (on average 2.13 ms and 3.61 ms,
respectively). We attribute the X and Y delays to the latency of Ethernet links and
the time of local processing at all the machines visited by the UDP packets.

Recall that Distributed Servers uses route optimization to enable direct com-
munication between the service’s clients and the contact node. However, since
route optimization takes place in parallel to the application-level communication,
we do not consider it in this experiment, and analyze it only when evaluating the
handoff times below.

3.2.2 Handoff Time Decomposition

Distributed Servers enables a service’s nodes to hand off transparently a client
TCP connection among each other. In this experiment, we investigate how much
time is necessary to hand off a TCP connection, and what operations consume
most of that time.

Handoffs are performed by a simple service that delivers 1 MB of content
upon request. The client first opens a TCP connection to Node 1 acting as the
contact node (see Fig. 1). Node 1 transfers 500 kB of data, and hands off the
connection to Node 2—changing the server endpoint of the client’s connection—
immediately after the last send() call returns. Node 2 then sends another 500 kB
of data to the client and closes the connection. In this scenario, we call Node 1,
where the server endpoint lies before handoff, the donor and Node 2, where the
server endpoint lies after handoff, the acceptor.

The total handoff time can be divided into seven phases (see Table 1) that
are discussed in more detail in [10]. The phases are delimited by the event of
sending or receiving some specific packets, which we time-stamp to mark the
boundary between subsequent phases. To detect events, we monitor all the packets
exchanged in the testbed using tcpdump listening on all the network interfaces of
the NISTnet router.

Table 1 reports the delays averaged over 100 download sessions. We have em-
ulated various speeds of the upstream DSL connections by shaping the traffic sent
from the home agents to the NISTnet router using the standard cbq queuing disci-

XtreemOS–Integrated Project 12/16

D3.2.6 IST-033576

No. Operation Name
Inter-node Bandwidth

100 Mbps 2 Mbps 1.5 Mbps 1 Mbps
1 Socket Extraction 0.8 ms 5.8 ms 6.9 ms 11.8 ms
2 State Transfer 6.5 ms 319.1 ms 434.1 ms 648.2 ms
3 Socket Re-creation 2.2 ms 2.1 ms 2.1 ms 2.2 ms
4 Return-Routability Procedure 2.5 ms 3.7 ms 4.9 ms 8.9 ms
5 BU-Message Construction 2.7 ms 2.7 ms 2.7 ms 2.7 ms
6 Binding-Management Procedure 2.6 ms 2.6 ms 2.6 ms 2.6 ms
7 Socket Activation 1.1 ms 1.1 ms 1.1 ms 1.1 ms

Total Time: 18.4 ms 337.1 ms 454.4 ms 677.5 ms

Table 1: Handoff time decomposition (without NISTnet delays). Phases are dis-
cussed in detail in [10].

pline available in the Linux kernel. The results for unshaped 100 Mbps Ethernet
are included for completion.

As can be observed, extracting the socket at the donor apparently takes be-
tween 0.8 and 11.8 ms depending on the network bandwidth (Phase 1). However,
since this operation is entirely local, it should not depend on the bandwidth at
all. We have therefore verified these results by measuring the actual time spent in
the socket-extracting call, which turned out to be 0.8 ms on average. We believe
that the higher values obtained using packet monitoring result from transmission
delays introduced by bandwidth shaping.

Most of the total handoff time is spent on transferring the socket state (Phase
2). The duration of this phase is proportional to the network bandwidth, as each
time the donor transfers the 90 kB of the socket state to the acceptor. This time
accounts for up to 95% of the total handoff time when emulating 1 Mbps DSL
lines.

Local phases such as re-creating the socket, constructing the Binding Update
message, and activating the socket turn out to be relatively fast and independent
of the bandwidth (Phases 3, 5, and 7). The return-routability procedure, in turn,
demonstrated some dependency on the bandwidth (Phase 4). However, since the
packets transmitted during this phase are very small, we believe that this depen-
dency is artificial, and results from delaying packets by the shaping mechanism
previously observed for Phase 1.

Interestingly, the artificial delays introduced by traffic shaping cannot be ob-
served for the binding management procedure, where the Binding Update and
Binding Acknowledgment messages are exchanged between the acceptor and the
client (Phase 6). This is probably because the low network activity during Phases

13/16 XtreemOS–Integrated Project

IST-033576 D3.2.6

3-5 causes the state of the shaping mechanism to be reset by the time Phase 6
starts, which enables the two packets to be transmitted without any delay.

We also performed the same experiment for various combinations of LSS ,
LCS1, and LCS2 latencies emulated by NISTnet (we used LCS1 = LCS2). The
results are similar to those presented in Table 1, except that the time spent in some
phases varies proportionally to the NISTnet latencies. In particular, phase 2 varies
by LSS , phase 4 varies by 2 ∗ LSS + 2 ∗ LCS1, and phase 6 varies by 2 ∗ LCS2.
The additional delays correspond to the latencies of network paths followed by
the messages exchanged during the respective phases. Note that should any of
the MIPv6 packets be lost, it will be automatically retransmitted; in that case,
the overall handoff time will obviously be extended by the MIPv6 retransmission
timeout of 1 second.

3.2.3 State Transfer Optimization

The previous experiment shows that most of the handoff time is spent transferring
the socket state from the donor to the acceptor. The reason why that transfer takes
so long is that in this experiment the donor extracts the socket immediately after
the last send() call returns. This means that the socket buffers are nearly full,
which results in the socket size taking about 90 kB in these experiments.

One way of reducing this size is to simply wait for some time as the donor
gradually sends the data stored in the socket buffers and removes the data ac-
knowledged by the client from the buffers. This would allow the client to receive
and acknowledge at least some of the data, which in turn would reduce the socket
state. In this experiment, we investigate how such waiting affects the handoff
time.

We modified our server so that it would wait for a given period of time between
passing the last data to the socket and starting the actual handoff procedure. We
also modified the client such that it measures its perceived handoff time. We define
the client-perceived handoff time as the delay between receiving the last packet
from the donor and the first packet from the acceptor.

Given the modified application, we repeatedly ran 100 download sessions for
1 MB of content and waiting times varying from 0 to 1000 ms with a step of 25 ms.
Similar to the previous experiments, we emulated three different DSL connection
bandwidths and various combinations of wide-area latencies. The results are pre-
sented in Figure 2.

Increasing the donor’s waiting time causes the client-perceived handoff time to
decrease to some minimum value. Having reached that value, the client-perceived
handoff time starts increasing. We verified that the minimum value corresponds to
the situation when the socket was extracted right after receiving the last acknowl-
edgment from the client, which removes the last packet from the socket buffers.

XtreemOS–Integrated Project 14/16

D3.2.6 IST-033576

Donor Waiting Time (ms)

C
lie

n
t−

p
e
rc

e
iv

e
d

H
a
n
d
o
ff
 T

im
e
 (

m
s
) 1000

 0
 0 200 400 600 800 1000

Lcs=0 Lss=0
Lcs=20 Lss=10

Lcs=40 Lss=20

 900
 800
 700
 600
 500
 400
 300

 100
 200

Donor Waiting Time (ms)

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0

Lcs=20 Lss=10
Lcs=0 Lss=0

Lcs=40 Lss=20

H
a
n
d
o
ff
 t
im

e
 (

m
s
)

C
lie

n
t−

p
e
rc

e
iv

e
d

 200 400 600 800 1000
 0

 1000

 1200

 0
 200 400 600 800 1000

Lsc=40 Lss=20

Lsc=0 Lss=0
Lsc=20 Lss=10

H
a
n

d
o

ff
 T

im
e

 (
m

s
)

C
lie

n
t−

p
e
rc

e
iv

e
d

Donor Waiting Time (ms)
 0

 200

 400

 600

 800

(a) 1 Mbps (b) 1.5 Mbps (c) 2 Mbps

Figure 2: Client-perceived handoff times for various upstream node connection
bandwidths

As a consequence, the socket state has only 90 bytes, which can be transferred in
the time of the one-way latency between the donor and acceptor. This eliminates
the delay resulting from transferring a large socket state over a low-bandwidth
connection. We conclude that the donor should always empty its output TCP
buffers before freezing the socket and starting the handoff. The conclusion holds
even as buffer sizes increase for higher bandwidth networks between the client
and donor because the client-perceived handoff will still be limited to the one-
way latency between the donor and acceptor.

4 Conclusion

As we have seen, the Distributed Servers platform is now mature enough to sup-
port transparent access to distributed groups of server nodes. Performance evalu-
ations show that Distributed Serverss are efficient: they allow for direct commu-
nication between a client and the server node that is currently serving it. Handoff
times, as perceived by the client, can be reduced to an acceptably low value. Fur-
thermore, we foresee no scalability bottleneck when using Distributed Servers to
serve massive numbers of connections.

The major limitations of Distributed Servers are known: first, Distributed
Servers rely on the assumption that a large fraction of client machines have native
support for MIPv6. Software support for MIPv6 is not a major issue, as MIPv6
has been implemented in all major operating systems. However, to be able to use
MIPv6 easily, client machines ought to be connected to an IPv6-enabled network.
This risk is well-identified, and systematically reported in the work package quar-
terly reports. Second, porting Distributed Servers to a new version of the Linux
kernel requires a non-trivial amount of work. We are currently busy porting Dis-
tributed Servers to Linux kernel version 2.6.25; simultaneously, WP2.1 is working
on the porting of XtreemOS foundations from 2.6.20 to 2.6.25. As soon as this

15/16 XtreemOS–Integrated Project

IST-033576 D3.2.6

upgrade is completed, we should be able to integrate Distributed Servers into the
XtreemOS distribution.

References
[1] Werner Almesberger. TCP connection passing. In Ottawa Linux Symposium,

July 2004.

[2] NTT Corporation. TCP connection passing 2. Available on WWW, 2006.
http://tcpcp2.sourceforge.net/.

[3] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6). RFC 2460,
December 1998.

[4] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. RFC 3775,
June 2004.

[5] Sheng Liang. The JavaTM Native Interface: Programmer’s Guide and Spec-
ification. Addison-Wesley, June 1999.

[6] MIPL: mobile ipv6 for linux. Available on the WWW, July 2006. http:
//www.mobile-ipv6.org/.

[7] The NIST net network emulator. Available on the WWW, July 2006. http:
//www-x.antd.nist.gov/nistnet/.

[8] Guillaume Pierre. First prototype version of ad hoc distributed servers.
XtreemOS deliverable D3.2.2, November 2007.

[9] Guillaume Pierre, Jeff Napper, and Jörg Domaschka. On the feasibility of
integration between distributed servers and virtual nodes. XtreemOS deliv-
erable D3.2.10, November 2008.

[10] Michał Szymaniak, Guillaume Pierre, Mariana Simons-Nikolova, and
Maarten van Steen. Enabling service adaptability with versatile any-
cast. Concurrency and Computation: Practice and Experience,
19(13):1837–1863, September 2007. http://www.globule.org/
publi/ESAVA_ccpe2007.html.

XtreemOS–Integrated Project 16/16

