
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Reproducible Evaluation of the publish subscribe system
D3.2.7

Due date of deliverable: November 30th, 2008
Actual submission date: November 13th, 2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.2
Task number: T3.2.2

Responsible institution: ZIB
Editor & and editor’s address: Thorsten Schütt

Zuse Institute Berlin
Takustrasse 7
14195 Berlin

Germany

Version 0.5 / Last edited by Thorsten Schütt / Nov 24th, 2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)



Revision history:
Version Date Authors Institution Section affected, comments

0.1 2008/10/06 Thorsten Schütt ZIB first draft
0.2 2008/10/23 Thorsten Schütt ZIB added benchmark results
0.3 2008/10/24 Thorsten Schütt ZIB clean-up
0.4 2008/11/11 Thorsten Schütt ZIB applied reviewer suggestions
0.5 2008/11/13 Thorsten Schütt ZIB applied reviewer suggestions

Reviewers:
Philip Robinson (SAP),Jonathan Marti (BSC)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.2.2 Design and implementation of a scalable publish/subscribe

system
ZIB*

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader



Executive summary
This deliverable presents the state of the design and evaluation of the XtreemOS
software component “Publish/Subscribe System”. This system is a key compo-
nent of the highly available and scalable infrastructure as described in deliverable
D3.2.1 under the responsibility of WP 3.2.

Scalaris is made up of four layers which together implement the “Publish/Sub-
scribe System”. At the bottom is a distributed hash table (DHT) which provides a
simple put and get interface to a dictionary like data-structure which is distributed
over all participating nodes. The DHT provides scalability and fault-tolerance.

The second layer implements so called symmetric replication which guaran-
tees the availability of data even when nodes fail or are unavailable. Symmet-
ric replication divides all nodes into r equivalence classes, and distributes the
replica so that the nodes storing the replicas of item belong to different equiva-
lence classes.

On top of the replication layer, we implemented a transaction data access layer,
which performs all read and write operations inside of transactions. The transac-
tions allow us to consistently update all replicas belonging to one item and at the
same update several items in one atomic operation. The transaction framework
employs Paxos.

The final layer is the “Publish/Subscribe System”, which uses the layers below
for managing subscribers and topics. In Sec. 3, we run several tests with different
numbers of nodes for evaluating the scalability. We will show that the Pub/Sub
system scales linearly with the number of nodes.
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1 Introduction
One important goal of Workpackage 3.2 of the XtreemOS project is to provide a
highly scalable publish/subscribe service (pub/sub). This service will be used by
XtreemOS services to notify other services and users about important, possibly
time-critical events within the XtreemOS operating system. A typical event could
be an unexpected termination of a job, an update in the file system, or the availabil-
ity of new resources and services. One potential domain where XtreemOS can be
applied is in cloud computing and the provision of Web 2.0 services. XtreemOS
therefore needs to be capable of supporting services that have high numbers and
frequencies of transactional requests and notifications. Hence, the herewith de-
scribed pub/sub system is at the core of many services in XtreemOS.

We will give a general overview of our “Publish/Subscribe System” called
Scalaris in Sec. 2. Scalaris is based on a distributed hashtable and transactional
data access layer on top. In Sec. 3 we will show that Scalaris scales linearly with
the number of nodes.
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2 System Description
Web 2.0, that is, the Internet as an information society platform supporting busi-
ness, recreation and knowledge exchange, initiated a business revolution. Service
providers offer Internet services for shopping (Amazon, eBay), online banking, in-
formation (Google, Flickr, Wikipedia), social networking (MySpace, Facebook),
and recreation (Second Life, online games). In our information society, Web 2.0
services are no longer just nice to have, but customers depend on their continuous
availability, regardless of time and space.

How to cope with such strong demands, especially in case of interactive com-
munity services that cannot be simply replicated? All users access the same
Wikipedia, meet in the same Second Life environment and want to discuss with
others via Twitter. Even the shortest interruption, caused by system downtime or
network partitioning may cause huge losses in reputation and revenue. Web 2.0
services are not just an added value, but they must be dependable. Apart from
24/7 availability, providers face another challenge: they must, for a good user ex-
perience, be able to respond within milliseconds to incoming requests, regardless
whether thousands or millions of concurrent requests are currently being served.
Indeed, scalability is a key challenge. Any scalable service, to be affordable,
somehow requires the system to be self managing.

Our Scalaris system, described below, provides a comprehensive solution for
self managing, scalable data management and pub/sub systems. We expect Scalaris
and similar systems to become an important core service of future Cloud Com-
puting environments.

As a common key aspect, all Web 2.0 services have to deal with concurrent
data updates. Typical examples are checking the availability of products and their
prices, purchasing items and putting them into virtual shopping carts, and updat-
ing the state in multi-player online games. Clearly, many of these data operations
have to be atomic, consistent, isolated and durable (so-called ACID properties).
Traditional centralized database systems are ill-suited for this task, sooner or later
they become a bottleneck for business workflow. Rather, a scalable, transactional
data store like Scalaris is what is needed.

2.1 Scalaris
We set out to build a distributed key/value store capable of serving thousands or
even millions of concurrent data accesses per second. Providing strong data con-
sistency in the face of node crashes and hefty concurrent read and write accesses
was one of our major goals.

With our Scalaris system, we do not attempt to replace current database man-
agement systems with their general, full-fledged SQL interfaces. Instead our tar-
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Figure 1: Scalaris system architecture.

get is to support transactional Web 2.0 services like those needed for Internet
shopping, banking, or multi-player online games. Our system consists of three
layers:

• At the bottom, an enhanced structured overlay network, with logarithmic
routing performance, provides the basis for storing and retrieving keys and
their corresponding values. In contrast to many other overlays, our imple-
mentation stores the keys in lexicographical order. Lexicographical order-
ing instead of random hashing enables control of data placement which is
necessary for low latency access in multi-datacenter environments.

• The middle layer implements data replication. It enhances the availability of
data even under harsh conditions such as node crashes and physical network
failures.

• The top layer provides transactional support for strong data consistency in
the face of concurrent data operations. It uses a fast consensus protocol
with low communication overhead that has been optimally embedded into
the structured overlay.

As illustrated in Fig. 1, these three layers provide a distributed key/value store
as a scalable and highly available service which is an important building block for

5



Web 2.0 applications. One of the applications, we are running on Scalaris is the
pub/sub service for XtreemOS. The following sections describe the layers in more
detail.

2.1.1 P2P Overlay

At the bottom layer, we use the structured overlay protocol Chord# [15, 16] for
storing and retrieving key-value pairs in nodes (peers) that are arranged in a virtual
ring. In each of the N nodes, Chord# maintains a routing table with O(log N) en-
tries (fingers). In contrast to Chord [20], Chord# stores the keys in lexicographical
order, thereby allowing range queries. To ensure logarithmic routing performance,
the fingers in the routing table are computed in such a way that successive fingers
in the routing table cross an exponentially increasing number of nodes in the ring.

Chord# uses the following algorithm for computing the fingers in the routing
table (the infix operator x . y retrieves y from the routing table of a node x):

finger i =

{
successor : i = 0
finger i−1 . finger i−1 : i "= 0

Thus, to calculate the ith finger, a node asks the remote node listed in its (i −
1)th finger to which node his (i − 1)th finger refers to. In general, the fingers in
level i are set to the fingers’ neighbors in the next lower level i− 1. At the lowest
level, the fingers point to the direct successors. The resulting structure is similar to
a skip list, but the fingers are computed deterministically without any probabilistic
component.

Compared to Chord, Chord# does the routing in the node space rather than
the key space. This finger placement has two advantages over that of Chord: First,
it works with any type of keys as long as a total order over the keys is defined, and
second, finger updates are cheaper, because they require just one hop instead of a
full search (as in Chord). A proof of Chord#’s logarithmic routing performance
can be found in [15].

2.1.2 Replication and Transaction Layer

The scheme described so far provides scalable access to distributed key/value
pairs. To additionally tolerate node failures, we replicate all key/value pairs over
r nodes using symmetric replication [5]. Read and write operations are per-
formed on a majority of the replicas, thereby tolerating the unavailability of up
to $(r − 1)/2% nodes.

Each item is assigned a version number. Read operations select the item with
the highest version number from a majority of the replicas. Thus a single read
operation accesses &(r + 1)/2' nodes, which is done in parallel.
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Figure 2: Adapted Paxos used in Scalaris.

Write operations are done with an adapted Paxos atomic commit protocol [12].
In contrast to the 3-Phase-Commit protocol (3PC) used in distributed database
systems, the adapted Paxos is non-blocking, because it employs a group of accep-
tors rather than a single transaction manager. We select those nodes as acceptors
that are responsible for symmetric replication of the transaction manager. The
group of acceptors is determined by the transaction manager just before the pre-
pare request is sent to the transaction participants (Fig. 2). This gives a pseudo
static group of transaction participants at validation time, which is contacted in
parallel.

Write operations and transactions need three phases, including the phase to
determine the nodes that participate in the atomic commit. For details see [12, 19].

In Scalaris, the adapted Paxos protocol serves two purposes: First it ensures
that all replicas of a single key are updated consistently, and second it is used for
implementing transactions over multiple keys, thereby realizing the ACID proper-
ties (atomicity, concurrency, isolation, durability).
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2.2 Self-Management
For many Web 2.0 services, the total cost-of-ownership is dominated by the costs
needed for personnel to maintain and optimize the service. Scalaris greatly re-
duces the operation cost with its built-in self* properties:

• Self healing: Scalaris continuously monitors the hosts it is running on.
When it detects a node crash, it immediately repairs the overlay network
and the database. Management tasks such as adding or removing hosts re-
quire minimal human intervention.

• Self tuning: Scalaris monitors the nodes’ workload and autonomously moves
items to distribute the load evenly over the system to improve the response
time of the system. When deploying Scalaris over multiple data-centers,
these algorithms are used to place frequently accessed items nearby the
users.

This protection scheme helps in high stress situations but it also constantly
monitors the system and proactively repairs and tunes the system before larger
interruptions can occur. In traditional database systems these operations require
human interference which is error prone and costly. With Scalaris the same num-
ber of system administrators can operate much larger installations than with legacy
databases.

2.3 Implementation
Because of asynchronous communication and unreliable networks, distributed al-
gorithms are difficult to implement and the resulting code is error-prone. Using
imperative programming languages and message passing libraries it is easy to im-
plement deadlocks of lifelocks.

In the literature [6], the actor model [7] became a popular paradigm for de-
scribing and reasoning about distributed algorithms. Chord# and the transaction
algorithms in Scalaris were also developed according to this model. The basic
primitives in this model are actors and messages. Every actor has a state, can send
messages, act upon messages and spawn new actors.

These primitives can be easily mapped to Erlang processes and messages. The
close relationship between the theoretical model and the programming language
allows a smooth transition from the theoretical model to prototypes and eventually
to a complete system.

Our Erlang implementation of Scalaris comprises many components. It has a
total of 11,000 lines of code: 7,000 for the P2P layer with replication and basic
system infrastructure, and 2,700 lines for the transaction layer.
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Figure 3: Supervisor tree of a Scalaris node. Each box represents one process.

2.3.1 Components and Supervisor Tree

Scalaris is a distributed algorithm. Each peer runs a number of processes as shown
in Fig. 3:

• Failure Detector supervises other peers and sends a crash message when a
node failure is detected.

• Configuration provides access to the configuration file and maintains pa-
rameter changes made at runtime.

• Key Holder stores the identifier of the node in the overlay.

• Statistics Collector collects statistics and forwards them to central statistic
servers.

• Chord# Node performs all important functions of the node. It maintains,
among other things, the successor list and the routing table.

• Database stores the key-value pairs of this node. The current implementa-
tion uses an in-memory dictionary, but disk store based on DETS or Mnesia
could also be used.

9



The processes are organized in a supervisor tree as illustrated in Fig. 3. The
first four processes are supervised by a one-for-one supervisor [1]: When a slave
crashes, it is restarted by the supervisor. The right-most processes (Chord# Node
and Database) are supervised by an all-for-one supervisor which restarts all slaves
when a single slave crashed. In Scalaris, when either of the Chord# Node or the
Database process fails, the other is explicitly killed and both are restarted to ensure
consistency.

2.4 Wikipedia on Scalaris
As a challenging benchmark for Scalaris, we implemented the core of Wikipedia,
the "free encyclopedia, that anyone can edit". Wikipedia runs on three sites. The
main one in Tampa is organized in three layers, the proxy server layer, the web
server layer, and the MySQL database layer. The proxy layer serves as a cache
for recent requests, and the web server layer runs the application logic and issues
requests to the data base layer. Wikipedia handles about 50,000 requests per sec-
ond, from which 48,000 are cache hits in the proxy server layer and 2,000 are
processed by the data base layer. The proxy and the web server layers are embar-
rassingly parallel and therefore trivial to scale. From a scalability point of view,
only the data base layer is challenging.

Our implementation uses Scalaris to replace the data base layer. This enables
us to run Wikipedia on geographically distributed sites and to scale to almost
any number of hosts. It inherits all the favorable properties of Scalaris, such as
scalability and self management.

The Wikipedia on Scalaris is fast. Using eight servers it executes 2,500 trans-
actions per second. All operations are performed within transactions to guarantee
data consistency and replica synchronization. Adding more computers improves
the performance almost linearly. The public Wikipedia, in contrast, employs ten
servers to execute 2,000 requests per second on the large master/slave MySQL
database in Tampa.
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3 Evaluation
Scalaris has a built-in benchmarking facility – the bench_server. The module
provides functions for executing benchmarks on all nodes, on which Scalaris is
currently running.

All benchmarks were run on an Intel Cluster at ZIB. Each node has 2 Quad-
Core E5420s running at 2.5GHz and 16GB memory. The nodes are connected via
GigE and Infiniband. All tests were performed on the GigE network.

If not noted otherwise, all tests were run with one Erlang virtual machine per
cluster node and 16 Scalaris nodes per virtual machine. As there are 8 cores per
node, we are running 2 Scalaris nodes per core.

For the tests we simulated two scenarios: a) publish and b) subscribe:

Publish The publish operation is one transaction which reads the list of a topic’s
subscribers.

Subscribe The subscribe operation is one transaction which reads the old list of
a topic’s subscribers topic, changes the list and writes it back.

Each item is stored in four replicas.
All benchmarks involved the following five steps:

1. Start stop watch

2. Start n threads in each VM

3. Each threads executes the operation to test i times

4. Wait for all threads to finish

5. Stop stop watch

The variable n is plotted on x-axis of the graphs as the number of threads per
VM. Note, that the scales are semilogarithmic. For the publish operation 2000
iterations were executed while the subscribe operation was run 100 times.

All tests were run using Revision 56 of Scalaris(http://code.google.com/p/scalaris).

3.1 1 Node
The one node test is different from the remaining tests, as all communication is
locally within the same virtual machine and no TCP/IP was involved. The reduced
overhead results in higher throughput.

The publish operation is simple enough, that a single thread issuing the re-
quests provides the best performance. The subscribe benefits from the additional
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Figure 4: 1 node: a) Subscribe and b) Publish

parallelism of several concurrent requests. The subscribe operation needs more
messages to execute and therefore takes more time to finish. The additional con-
currency allows to hide the latency.

3.2 2 Nodes
In the tests with two nodes the subscribe operation is slightly slower than with
only one node, because of the additional overhead of the network. Similar to the
one node test a medium amount of parallelism in the request issuers provides the
best throughput.
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Figure 5: 2 nodes: a) Subscribe and b) Publish

The publish operation is slightly faster with two nodes and is pretty indepen-
dent of the grade of parallelism.

3.3 4 Nodes
The subscribe performance again peaks at 10 threads per VM.

The publish performance is again pretty independent of the grade of paral-
lelism.
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Figure 6: 4 nodes: a) Subscribe and b) Publish

3.4 8 Nodes
The subscribe performance continues to increase almost linearly with the number
of nodes and can handle high levels of concurrency.
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Figure 7: 8 nodes: a) Subscribe and b) Publish

The publish performance is steady up to 10 threads per VM, but drops for
higher levels of concurrency. Note though, 100 threads per VM means that 8*100
threads issue publish requests as fast as they can.

3.5 16 Nodes
The subscribe performance peaks at 50 threads per VM or 800 concurrent users.

We stopped plotting the publish performance with high levels of concurrency
because the execution times of several runs with the same parameters varied to
much.

3.6 Scaling
Over a wide range of system sizes the system scales linearly. The exception is the
single node scenario because the absents of network overhead.
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Figure 8: 16 nodes: a) Subscribe and b) Publish
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4 Current Status and Deployment
In the last couple of month, we promoted Scalaris at several high-profile events:
21.05.2008 IEEE Scale Challenge
14.06.2008 Google Scalability Conference
27.06.2008 Erlang eXchange
23.07.2008 Open Source Release
27.09.2008 ACM Sigplan Erlang Workshop

Since July, Scalaris is available as open-source at: http://code.google.com/p/scalaris
and we hope to build a community of users from XtreemOS partners as well as ex-
ternal groups. At the aforementioned conferences, we were contacted by several
companies who expressed interest in using Scalaris.

5 Conclusion
Scalaris provides a scalable and self managing pub/sub system and a transac-
tional key-value store. Its scalability and self* capabilities were demonstrated in
the IEEE Scalable Computing Challenge 2008, where Scalaris won the 1st prize
(Fig. 10).
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Figure 10: Scalaris won the 1st price at the IEEE Scalable Computing Challenge
2008.

The pub/sub service will be included in the next release of XtreemOS and it
will be first integrated with XtreemFS.

Compared to other data services, Scalaris has significantly lower operating
costs. Scalaris and similar systems will be an important building block for future
Cloud Computing environments and Grid services.
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