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Executive Summary
This deliverable presents work developed within XtreemOS in two areas: feder-
ation and interoperability. Federation is achieved by implementing single sign-
on and delegation across a XtreemOS infrastructure. Interoperability between
XtreemOS and the gLite middleware is analysed, focusing on security issues such
as certificate management, security policies and Virtual Organisation (VO) man-
agement.

Single sign-on in XtreemOS is based on a credential store trusted by all other
operating system services, where the user can upload his public certificates and
through which all grid requests from user space to XtreemOS services are for-
warded. This credential store initiates a key challenge to check that the user
owns this certificate and applies the certificate chain validation when the certifi-
cate is uploaded. The certificates remains in the credential store until the user
closes his session or until it is not valid anymore. This approach can be also
used to achieve delegation. The software stack developed for the integration of
Single-sign-on and delegation in XtreemOS contains a new operating system ser-
vice (SSO-XOS), a client library for trusted nodes (libSSO), a client library for
untrusted nodes (libuntrustedSSO), an SSH-XOS subsystem exploited by
libuntrustedSSO (ssh-xos-sso-client) and another SSH-XOS sub-
system for credential delegation (ssh-xos-sso-delegation).

The deliverable also presents DToken, a complementary approach to the stan-
dard delegation in XtreemOS, which allows one to achieve lightweight and trace-
able delegation. DToken is lightweight because it reduces system vulnerability
and enhances system manageability by eliminating the use of freshly generated
key pairs in a distributed setting, which subsequently removes the major perfor-
mance bottleneck suffered by classical Grid delegation solutions. DToken is also
traceable because the principalŠs identity in a delegation chain is preserved by
cryptographically verifiable mechanisms. Implementation of the DToken solution
uses the OpenSSL toolkit. The overall cost of creating a DToken, the major cost
of the DToken delegation architecture, is roughly 1/3, 1/5, and 1/10 of that of
creating a proxy certificate when the certificate key size is 512, 1024, and 2048
bits, respectively. These results demonstrate that our proposal provides significant
performance gain over the proxy certificate approach.

The deliverable also reports experiences on achieving interoperability between
XtreemOS and the gLite middleware. In relation to certificate management, both
XtreemOS and gLite certificates are based on the standard X.509 certificates, but
differ in the optional fields and extensions. To deal with these differences, it is
presented a credential conversion service that acts as a gateway converting gLite
certificates provided by the UK National Grid Service into valid XtreemOS cer-
tificates. In relation to security policies, main interoperability challenges con-
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cern with the policy language, ontology issues and enforcement of policies. Both
XtreemOS and gLite could include policies written in the XACML language, fa-
cilitating their interoperability. In relation to VO management, the deliverable
analyses difference in membership management, by comparing EGEE VOMS
with XtreemOS X-VOMS, and information security of VO management. Finally,
interoperability is exemplified in a case study about a virtual marketplace of com-
putational resources across gLite and XtreemOS Grids.
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1 Introduction
This deliverable presents work developed in two areas: federation and interop-
erability. Federation is achieved by implementing single sign-on and delegation
across a XtreemOS infrastructure. Interoperability between XtreemOS and the
gLite middleware is analysed, focusing on security issues.

Single sign-on in XtreemOS is based on a credential store trusted by all other
operating system services, where the user can upload his public certificates and
through which all grid requests from user space to XtreemOS services are for-
warded. This credential store initiates a key challenge to check that the user owns
this certificate and applies the certificate chain validation when the certificate is
uploaded. The certificate remains in the credential store until the user closes his
session or until it is not valid anymore. This approach can be also used to achieve
delegation.

The deliverable also presents DToken, a complementary approach to the stan-
dard delegation in XtreemOS, which allows one to achieve lightweight and trace-
able delegation. DToken is lightweight because it reduces system vulnerability
and enhances system manageability by eliminating the use of freshly generated
key pairs in a distributed setting, which subsequently removes the major perfor-
mance bottleneck suffered by classical Grid delegation solutions. DToken is also
traceable because the principal’s identity in a delegation chain is preserved by
cryptographically verifiable mechanisms.

Finally, the deliverable reports experiences on achieving interoperability be-
tween XtreemOS and the gLite middleware. It is analysed interoperability chal-
lenges in relation to certificate management, security policies and Virtual Organi-
sation management. Interoperability is exemplified in a case study about a virtual
marketplace of computational resources.

The structure of the document is the following. Chapter 2 presents single
sign-on and delegation in XtreemOS. Then, Chapter 3 describes how to achieve
traceable delegations by using the DToken approach. Chapter 4 discusses in-
teroperability between XtreemOS and gLite. Finally, Chapter 5 concludes the
document and highlights future work.
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2 Single Sign-On in XtreemOS

2.1 Introduction

XtreemOS users are managed by Virtual Organizations and are not registered on
the grid nodes. User credentials on an XtreemOS grid are stored inside X.509
identity and attribute certificates distributed by their Virtual Organizations. These
credentials are exploited by XtreemOS core and resource nodes configured to han-
dle requests received on behalf VOs. In the security architecture of XtreemOS,
users get their credentials inside X.509 certificates from their Credential Distri-
bution Authority (CDA) running on behalf of their VOs. As these certificates
are stored in user space, they need to be validated each time the user transfers
them to some XtreemOS service. X.509 certificate validation involves private
key challenge to make sure that the user owns this certificate and certificate chain
validation to check that it has been delivered by a recognized certificate authority.

Having to type a password for each request to the grid is really painful, not
very secure and makes scripting difficult. Single-sign-on systems avoid the needs
to re-type a password each time. Various single-sign-on mechanisms have been
proposed so far through agents, through secure authenticated channels or using
proxy certificates. Using a single-sign-on agent, all key challenges are handle
by a some service (agent) acting on behalf of the user. A typical example is the
SSH agent. The user uploads his password to his agent which then replies to all
challenge requests. SSH also provide an even more efficient single-sign-on mech-
anism through the control master which implements a secure channel between the
user and a node. This secure channel is established during the first connection to
the node and reused for later requests. This technique avoid the rather expensive
key challenge step but is limited to connections between a single user to a single
node. X.509 proxy certificates used in many grid systems (Globus, Glite) provide
single-sign-on when their private keys are not protected by a password. Password-
less certificates or proxies are considered secure enough as long as their validity
period is short (a few hours).

Delegation happens when a user (or a service) transfers part of its rights (cre-
dentials) to some other service. This mechanism allows the delegatee to act on
behalf of a delegator. For instance, using some form of delegation, an XtreemOS
user would delegate his rights to access the grid to his jobs running on resource
nodes. Single-sign-on is a restricted form of delegation. Proxy certificates are
used in Globus-based middleware to provide delegation: a new password-less key
pair is generated by the delegatee, the delegator generates a new proxy-certificate
integrating the proxy public key and signs it using its certificate or proxy private
key.
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2.2 XtreemOS SSO system

A certificate needs to be checked each time it is moved from the user space to the
operating system space in XtreemOS: it is necessary to check that the user owns
this certificate and that it has been signed by a recognized authority. The basic
idea for XtreemOS is to provide some credential store trusted by all other operat-
ing system services where the user can upload his public certificates and through
which all grid requests from user space to XtreemOS services are forwarded. This
credential store initiates a key challenge to check that the user owns this certificate
and applies the certificate chain validation when the certificate is uploaded. The
certificates remains in the credential store until the user closes his session or until
it is not valid anymore.

The user processes interact with the SSO service through the client-SSO li-
brary. This library provides entry points for certificate management and for all
grid requests.

2.2.1 User authentication on the SSO system

The SSO system is an operating system service running with operating system
credentials and listening for requests on a socket. To authenticate users, this ser-
vice records the local UID/GID of the local process uploading credentials and then
restricts access to these credentials to processes running with the same Unix cre-
dentials (the same UID/GID). In order to provide this simple and efficient scheme,
the listening socket is a UNIX socket, which allows to check peer credentials.
Only local processes running on the same node as the SSO service can communi-
cate with this service. The fact that this service does not run with user credentials
eliminates the risk that a user could modify the credentials through ptrace or
through the \proc file-system.

2.2.2 User isolation in the SSO system

The SSO system proposed for XtreemOS can be run in private as well as shared
mode. When started by a local user, the system runs in private mode and accepts
only requests from this user. Moreover it is possible, in this case, to restrict access
rights to the listening socket to this single user. However, also it is working on be-
half a single user, private SSO services still run with operating system credentials.

When started by root (by init.d for instance), the SSO service runs in
shared mode: all users can upload credentials and submit grid requests through
the listening socket. Shared SSO services select the credentials to be associated
to a request from the UID/GID of the calling process.
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2.2.3 Grid requests submission

The client-SSO library provides an API for all XtreemOS grid requests. When
the client-side handles a grid request, job creation for instance, it opens the SSO
socket (whether it contacts a shared or a private SSO service is configured in the
user sso.cfg configuration file), transfers the request data to the service and
waits for the result. The SSO service piggy-backs the user credentials in this
requests and forwards it to the destination service (DIXI bus in general). The des-
tination service trusts the SSO service: both run with operating system credentials
and can authenticate themselves using their service certificates. Single-sign-on is
provided by the fact that key challenge is necessary only when the credentials are
uploaded. Although the certificate chain can be validated when the credentials are
uploaded, extra verification might be necessary each time they are used: validity
period, non-revocation, etc.

2.2.4 Delegation using SSO services

The user credentials associated to a job can be automatically uploaded (or up-
loaded only when requested through some extension to the JSDL) in a local SSO
service on each resource node by the Execution Managers of XtreemOS. However,
as the credentials received by the Execution Managers are currently limited to a
single X.509 token, and as the DIXI software bus currently provides no means to
upload credentials, some other means need to be provided for delegated credential
management. Two solutions have been evaluated to transfer credentials between
SSO services: connection through some INET socket and XOS-SSH subsystem.

It is possible to provide some INET socket bound to a local port for each SSO
service. SSO service can then transfer credentials directly through these sockets.
Security is provided using SSL/TLS and authentication using the service certifi-
cates of the SSO services. The major limitations of this solution concern security
and configuration. The presence of the INET socket makes DOS attacks on SSO
services possible. Configuration is made more complex, mainly for private SSO
services as the port number where a delegatee service is listening needs to be
known by the delegator.

Through a dedicated SSH-XOS subsystem, a SSO service can connect to the
resource node using its XtreemOS X.509 service certificate and upload user cre-
dentials on a shared service or start a private service. The main advantage of this
solution is that as SSH-XOS is already configured in XtreemOS on all resource
nodes, there is no need to allocate any new port for communication.
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2.2.5 Support for untrusted clients

Untrusted XtreemOS clients such as mobile devices or user laptops cannot be
trusted when users can modify their configuration. These devices cannot run
trusted SSO services. The solution proposed for this case is to allow users to
communicate with SSO services running on trusted nodes trough SSH-XOS with
their XtreemOS certificate. The untrusted-client-SSO library provided on these
devices export the same API as the client-SSO library. The difference is that this
new library communicates with the SSO service through a new SSH-XOS sub-
system. The subsystem executed on the trusted node authenticates the user with
his XtreemOS certificates, contacts the local shared SSO service (or starts a pri-
vate one) and can then manage credentials or make grid requests. It is possible to
configure the SSH subsystem used for authentication in the SSO service. As this
untrusted-client-SSO library provides the same API as the trusted node client-SSO
library, mobile device applications get the same capabilities to access the grid as if
they were running on trusted nodes. A list of nodes where the subsystem uploads
the user credentials can be defined in a local user configuration file. Single-sign-
on for the SSH-XOS subsystem is provided by a SSH agent and/or using the SSH
control master. The control master option should give better performance as it
avoids the authentication phase for each request.

2.3 Extra functionalities

2.3.1 User private sockets

In order to better isolate user credentials, a shared SSO service can provide pri-
vate UNIX socket to its users. Access to these private sockets is limited to the user
through file-system access rights. Using private sockets increases security and iso-
lation and should provide better resistance to DOS attacks as only the associated
user can open his private socket.

2.3.2 Compatibility with with XtreemOS 2.0 and 2.1 releases

The XtreemOS SSO system is to be introduced in release 3.0 of the operating
system. In order to maintain compatibility with the previous releases, the SSO
service will automatically upload the user certificate present in user grid requests.
When the SSO service receives a Grid request containing some X.509 certificate
from a user, it checks if this certificate has not been already validated. If the cer-
tificate is unknown in the user credential list, the validation procedure is applied:
key challenge and chain verification. If the SSO service has already received this
certificate and if this certificate is still valid, the key challenge step is skipped. It
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seems to be also possible to skip certificate chain validation in some cases (non-
revocation checks as well as validity period verification are mandatory). If the
grid request contains no certificate, the SSO service will piggy-back the currently
selected certificate in the request sent to the destination service.

2.3.3 Credential types and credential history

The basic SSO system described in section 2.2 considers one credential type only:
X509 certificate. The current implementation of SSO considers various credential
types. For each new credential type, SSO must be extended to integrate their
validation procedure. SSO can also be configured to record the history of user
credentials: how, when and on which node they were validated, usage logs, etc.
The history is considered as a special credential type and is replicated with the
other credentials during delegation.

2.3.4 Credential delegation

In order to support credential delegation between users for highly dynamic VOs
(extension from INRIA), the SSO system allows users to delegate their credentials
to other users of the system. In a user delegation request, a user specifies to
which user (name or UID) he delegates his credentials and with which capabilities.
Using capabilities, it is possible to restrict the delegation rights to monitoring, for
instance. Credential delegation is in its early development.

2.3.5 Distributed SSO service

The current implementation of SSO provides two functionalities on trusted nodes:
credential store and Single-sign-on. Everywhere a user process need to make grid
requests, the service needs to be replicated. For the future, we plan to evaluate the
possibility to transform the SSO credential store into a distributed service. Using
a distributed credential store, credential uploaded on some node can be exploited
on other nodes. It should be possible to implement a distributed credential store
on some kind of overlay. And, if the overlay securely manages credential deletion,
certificate revocation can be efficiently implemented: it should be enough to delete
the certificate from the credential store.

2.4 SSO software

The software stack developed for the integration of Single-sign-on and delegation
in XtreemOS contains a new operating system service (SSO-XOS), a client library
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for trusted nodes (libSSO), a client library for untrusted nodes (libuntrusted-
SSO), an SSH-XOS subsystem exploited by libuntrustedSSO (ssh-xos-
-sso-client) and another SSH-XOS subsystem for credential delegation (ssh-
-xos-sso-delegation).

2.4.1 SSO-XOS service

The SSO-XOS service runs as a shared service when started by root and as a pri-
vate when started by a user. The SSO-XOS binary is set-uid and, in both cases,
this service runs with operating system credentials (sso:sso or root:root).
When started as a shared service, it reads its configuration file from /etc/xos/-
config/sso.cfg by default. Private SSO services read their configuration
from $HOME/.xos/sso.cfg by default. By default, the listening sockets are
located in /var/run/sso/. The shared socket is /var/run/sso/shared
and private sockets are named /var/run/sso/$USER.

2.4.2 libSSO library

The libSSO library allows applications running on trusted nodes to directly
access the XtreemOS operating service through a shared or private local SSO
service. This library reads its configuration from $HOME/.xos/sso.cfg by
default (or /etc/xos/config/sso.cfg if the user does not provide any
configuration). It provides the API for managing credentials in the SSO ser-
vice and for calling XtreemOS services: libSSO replicates the whole API of
libXATICA.

2.4.3 libuntrustedSSO library

The libuntrustedSSO library allows applications running on untrusted nodes
to directly access the XtreemOS operating service through a shared or private
SSO service running on a trusted node. This library reads its configuration from
$HOME/.xos/sso.cfg by default or /etc/xos/config/sso.cfg if the
user does not provide any configuration). It provides the same API as library
libSSO installed on trusted nodes. Through dynamic binding, it should possible
to run the same application binaries on trusted as well as on untrusted nodes.

2.4.4 ssh-xos-sso-client SSH-XOS subsystem

The ssh-xos-sso-client SSH-XOS subsystem is used by the libuntrus-
tedSSO library to connect to a SSO-XOS service running on a trusted node using
the user’s XtreemOS certificate. This subsystem is made of a client part executed
by the application and a server part executed by the SSHD-XOS daemon.
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2.4.5 ssh-xos-sso-delegation SSH-XOS subsystem

The ssh-xos-sso-delegation SSH-XOS subsystem allows a SSO service
to delegate credentials to a SSO service running on another trusted node using its
XtreemOS service certificate.

2.5 Discussion
The SSO solution proposed in this section is a pure operating system solution to
single-sign-on and delegation. In classical operating systems, some credentials are
bound to users when they log in, UID/GID for instance in Unix systems. All pro-
cesses running of behalf of the user have these credentials. When a user process
accesses some object, access control is in general based on the process credentials.
There is no need to asks the user if he allows his process to access the object. This
is a form of delegation managed by the operating system: the operating system
ensures the binding of user credentials to his processes. The solution proposed in
this document is similar: XtreemOS guarantees the binding of user credentials to
all grid requests sent by the user to XtreemOS services.

At the opposite, the single-sign-on and delegation solution provided by X.509
proxy certificates is a pure cryptographic solution and is not based on the underly-
ing operating system. X.509 proxies are stored in user space and all verifications
happen in user space. The sole implication of the operating system is in the pro-
tection of private keys through file access rights.

The DToken solution proposed in section 3 is basically a cryptographic solu-
tion with support from the operating system: at the opposite of the X.509 proxy
certificate solution, the keys used for signing DTokens belong to operating system
services and not to the users.
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3 Delegation in XtreemOS via DToken

This chapter presents DToken1 , a lightweight and traceable delegation architec-
ture for distributed systems, including a distributed Grid-wide operating system,
such as XtreemOS.

Several major techniques have been proposed to address delegation problems
in distributed computing environments of various scales, ranging from LAN, WAN,
to the Internet. In the Grid world, RFC3820 [1] is the de-facto standard for dele-
gation. This specification introduces a notion - Proxy Certificate as a delegation
concept to describe the delegation chain between two or more parties in a dis-
tributed system. Proxy certificate, as one of the most popular forms of delegation
tokens, is based on public key cryptography. Hence, in our work, we also focus
on delegation technique using public key cryptography.

One of the major characteristics of existing public key cryptography based
delegation mechanisms is their use of a fresh key pair every step along the dele-
gation chain. This has led to a range of open issues, including a non-negligible
performance overhead imposed by using a fresh key pair in proxy credentials; the
lack of traceability of the principals in a delegation chain; and the complexity of
managing the dynamically created key pairs in the distributed environment. This
work focuses on the architectural issues of delegation. We propose a new dele-
gation architecture, called DToken, that takes advantage of the PKI. DToken is
lightweight as it eliminates the use of freshly generated key pairs in a distributed
setting. DToken is also traceable because the identity of the principals in a dele-
gation chain is preserved by cryptographically verifiable mechanisms. A prelimi-
nary evaluation demonstrates that DToken outperforms proxy certificate. We will
demonstrate that in a single-level delegation, the cost of creating a DToken, the
major cost of delegation, is roughly 1/3, 1/5, and 1/10 of that of creating a proxy
certificate when the certificate key size is 512, 1024, and 2048 bits, respectively.

3.1 Introduction

The problem of delegation for computer systems has attracted significant interest
in recent years, see, for example [4, 1, 5, 2, 3]. Delegation occurs when a principal
(a person, a process, a service or a machine) authorizes another principal to act
on its behalf. The receiver of a delegation relationship, called a delegatee, inherits
all (or part of) the rights and responsibilities from the initiator of the relationship,
called a delegator.

1The major parts of this work has been published at The 28th IEEE Symposium on Reliable
Distributed Systems by Erica Y. Yang and Brian Matthews as a full paper. The acceptance rate
(full paper) for this conference is 22% (23/104).

15



Delegation of rights is pervasive in computer systems. The typical cases of
delegation include: forking a process on behalf of a user logging in to a computer;
starting a new process for a user already logged in; running a job or an application;
and accessing a file system locally or remotely on behalf of an authenticated user.
All these cases can occur within a standalone or a distributed system.

In the 90’s, delegation was often studied in the context of a distributed sys-
tem where critical services are centrally managed, meaning that they are deployed
in trustworthy premises and operated by trusted operators within a single orga-
nization. However, because resources are distributed across a closed network
which is perceived as untrusted, security techniques were introduced into dele-
gation mechanisms to provide assurances such as accountability, non-repudiation
and traceability. At around the same time, two representative approaches emerged.
The proxy concept was introduced into Kerberos to support restricted proxying by
leveraging conventional cryptography [5]. And a notion based on public key cryp-
tography, called delegation certificate, was introduced to enable delegation in the
Distributed System Security Architecture (DSSA) [4]. This certificate has a pri-
vate counterpart, named delegation key, which allows a delegator to authorize the
delegation certificate provided by a delegatee to enable further delegation.

In recent years, with the development of Grid middleware (e.g. Globus and
Glite) and their deployment in wide-scale Grid infrastructures (e.g. EGEE in Eu-
rope, TeraGrid in the U.S., National Grid Service in the U.K.), delegation tech-
niques have been widely employed to enable accountability and (distributed) au-
thorization for coordinated resource sharing and collaboration in large-scale de-
centralized distributed systems. Such systems differ from centralized distributed
systems in two major aspects: a) it is hard to ensure the same level of trust across
all services because they are often managed decentrally by different organizations
under different standards; b) enforcing conventional identity-based authorization
(e.g. via access control lists) is no longer a scaleable approach because there are
potentially thousands of machines and users from around the world.

3.1.1 The Problem

Proxy certificates, an RFC standard [1] proposed as part of the Grid Security In-
frastructure (GSI), are a widely deployed delegation solution implemented upon
OpenSSL and Grid protocols. It differs from the DSSA delegation solution in two
major aspects [2]: the former is based on the standard X509 certificate format
whilst the latter is not; and the former comes with an open source reference im-
plementation being widely deployed in practice whilst the situation with the latter
is unclear.

However, despite their popularity, proxy certificates suffer from three major
limitations, as discussed in [2, 1]. First, proxy certificate generation imposes a
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non-negligible performance overhead on server side key generation because of
the use of a fresh key pair in proxy credentials. In practice, as the authors noted,
this also can cause concerns regarding Denial-of-Service attacks. Secondly, proxy
certificates are generated by a delegatee (typically a server) and signed by a del-
egator (typically a user or a predecessor server in a delegation chain). But only
the identity of the originating delegator (often the user) is preserved in the current
proxy certificate solution, and no information about servers later the delegation
chain can be identified. This is referred to as the delegation tracing problem and
was noted in rfc 3820 [1] but it was left as future work. Such information can be
useful to the principals in the delegation chain to determine whether they would
like to reject the chain because some of the participants have been compromised.
Finally, the use of a fresh key pair for dynamic delegation also makes it difficult
to ensure a consistent level of security for the private keys throughout the entire
delegation chain due to the scale and heterogeneity of the distributed system. In
theory, both proxy certificate and the DSSA solutions both allow users to “revoke”
the delegation, thus invalidating the delegation chain, by deleting the private key
from their local computer. But this is based upon the assumption that a compro-
mised server cannot exercise its delegated rights because all the other servers in
the chain behave correctly by eliminating their local private key when the delega-
tion is no longer needed. Similar to the authors of [6], we believe it is reasonable
to ask how to ensure this assumption in practice. There are two major issues here.
One is how to determine when the delegation chain is no longer needed (while
the keys are still valid). Neither solution gives hints on how this should be im-
plemented. The other problem is that because servers are managed by different
organizations, it is difficult to ensure all the sites offer the same level of security
standards.

3.1.2 Contributions

The contributions of this work are summarised as follows.

1. A novel practical public key cryptography based delegation architecture,
called D-Token, is proposed to tackle the major limitations of existing public
key cryptography based delegation approaches (e.g. [4, 1]).

2. The DToken delegation protocols are presented in the context of two typical
delegation scenarios when accessing a distributed system: via a (trusted)
gateway and via a (untrusted) public computer.

3. We demonstrate, through preliminary experimental evaluation, that our im-
plementation reduces the overall cost of delegation to roughly 1/3, 1/5, and
1/10 of that with an existing popular delegation implementation.
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3.2 Context and Definitions
We consider a distributed system S consisting of a set of system components de-
ployed on a set of n machines M = {m1,m2, ...,mn}. S provides services to its
users, such as accessing files stored in a distributed file system or running pro-
cesses/jobs on a remote machine (or machines). A user U accesses the services
via a client machine C. U ’s long-term credentials (a public key identity certifi-
cate and the private key) are stored at a user trusted machine TM , which can
be a trusted online credential store, a smart card owned by the user, or a trusted
personal computer.

C can be classified into two cases. First, C can be a gateway (or a web portal)
into S, implemented as a long-lasting process, running on behalf of the user while
he is offline. It is typical that such examples of C concurrently deals with different
users’ requests for the services provided by S. C needs to demonstrate to the
machines in M that it is “authorized” by U to perform tasks. Second, C can
be a public computer (e.g. a pool of shared computers in a laboratory). In this
case, C cannot be trusted, therefore, the user’s long-term credentials cannot be
stored at C. To access the services, C still needs to demonstrate to the machines
in M that it is “authorized” by U . In either case, a delegation between U and
C is required to obtain the authorization. There is an open network N (e.g. the
Internet) connecting the machines in S, C, and TM .

Threat Model We consider two types of attackers: insiders and outsiders.
An insider openly and correctly execute protocols as specified by a protocol

specification under their own identity and credentials. But they cannot be trusted
to honor their own behaviour after the protocol is finished. An insider might try to
subvert the protocol by, for example, denying its participation of the protocol or
replaying messages so as to gain advantages of the system (e.g. access resources
repeatedly by replaying messages). However, we assume that an insider keeps the
secrecy and integrity of its own credentials (e.g. private key).

The network is untrusted, namely there are outsiders attacking N at their wish.
We consider an outsider (or outsiders) under the Dolev-Yao model [9], where the
outsider can: a) eavesdrop and modify any messages transmitted over N ; and b)
take part in a protocol using his own identity by sending or receiving messages.
But an outsider cannot subvert any cryptography protocols (e.g. digital signature
schemes) we employ in the system. In other words, the outsider is not able to per-
form cryptoanalysis over the cryptography protocols to derive useful information,
for example the plaintext from a piece of encrypted text, or the private key used
for signing a message.

In general, it is not realistic to assume the trustworthiness of C because it is
neither always under the control of the system (for example, in the public com-
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puter scenario), nor always under that of U . The rest of the chapter shall focus on
the delegation problem introduced by the general case.

Secure Channels Because of the untrustworthiness of N and C, we require
the interactions among the machines within S and those between C and S to be
secure. By a “secure” channel, we mean the channel is mutually authenticated and
encrypted. This secure channel requirement can be satisfied by using the standard
SSL protocol.

Credentials Our system is based on PKI. Each machine mi, where i = 1, 2, ..., n,
in M has a machine certificate Cmi

and a corresponding private key Kmi
. Here-

after, by a certificate, we refer to the standard X.509 public key certificate. Sim-
ilarly, C has its own credentials. When it is a gateway, we denote its certificate
as CG and a corresponding private key KG. When it is a public computer PC,
its credentials are denoted as CPC and KPC . The certificates and keys may be
distributed to the machines via an online or offline Certification Authority (CA)
or from an online credential repository. The certificate/key distribution problem
of how the user and the machines obtain, configure, and use these certificates and
keys is described in Deliverables D3.5.13 and D3.5.9.

Concepts A principal is an entity that can be granted access to objects or can
make statements affecting access control decisions [7]. In its basic form, del-
egation is a relationship between two principals: a delegator D1 and a delega-
tee D2. We denote a delegation from D1 to D2 as D1 → D2. D2 can further
delegate to other principals D3, D4, ..., Dn, where n ∈ N and n ≥ 2, form-
ing a chained delegation [4], also called a delegation chain or cascaded dele-
gation involving principals D1, D2, ..., to Dn (and so on), which is denoted by
D1 → D2 → D3 → ... → Dn. An originating principal is the principal from
who a delegation chain starts, and the number of non-originating principals in-
volved in a delegation chain is called the delegation depth. A final principal, also
called end server [5], is the principal who finally executes the delegated rights. An
intermediate principal is any principal between the originating and final principals
in a delegation chain. Clearly, there can be none, one or more than one intermedi-
ate principals in the chain. In the above example, D1 is the originating principal,
Dn final principal, D2, ..., Dn−1 the intermediate principals. The delegation depth
is n− 1.

In a distributed environment, delegation of rights is often “restricted” so that
only part of the rights is made available to a delegatee to reduce the risk of a com-
promised delegatee. Typically, three types of delegation constraints, also called
delegation restrictions can be imposed in a delegation: the delegatee’s identity
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IDDe (to restrict who can act on behalf of the delegator); the delegation duration,
including a valid-from timestamp Vfr and a valid-to timestamp Vto (to restrict how
long the delegatee can exercise the delegated rights and how long the delegator can
reuse a delegation token); and delegation policies PDr→De (to restrict the context
where the delegation can take place, e.g. delegation depth, characteristics of the
delegatee, the scope of delegated operations).

It is often down to the final principal to respect and enforce the constraints
when it finally authorizes the operations based on its local policies and the ag-
gregated delegated rights passed down the delegation chain. The delegated rights
should be the intersections of all the rights that have been granted by and within
the minimum duration specified by the principals along the chain, resulting in the
least privileges of the original delegator being enforced at the final principal.

Typically, a delegator passes the delegatee a security token, called a delegation
token DTDr→De , also called a delegation certificate [4] or a proxy [5], to allow it
act on its behalf under certain constraints. By a “security token”, we mean that
it is constructed using digital signature techniques to ensure information integrity
and provide non-repudiation property. Of course, if the delegator chooses there
may be no constraints. In addition to the delegation constraints, a DT should also
contain a timestamp TS specifying when the delegation takes place.

In a chained delegation, each principal passes a DT to its immediate descen-
dant and all the previous DTs it has received from its ancestors. Thus, D1 passes
a DTD1→D2 to D2, D2 passes DTD1→D2 and DTD2→D3 to D3, ..., and Dn−1 passes
DTD1→D2 , ..., DTDn−1→Dn to Dn.

In this work, “a mutually authenticated channel” is treated as a synonym of “a
SSL or TLS channel” because the latter is a well-established PKI based technique
to build the former. In practice, a SSL/TLS channel is also encrypted, although
the delegation scheme and architecture presented in this work does not require
this feature.

Properties of delegation Depending on the cryptography techniques that it em-
ploys, a delegation scheme can have a range of properties, such as traceability,
accountability, non-repudiation, and authorization.

A traceable delegation is one where each principal in a delegation chain is
uniquely identifiable. That is, each principal can find the identity of any of the
principals prior to itself in the delegation chain. If a delegation is traceable, we
also call the delegation satisfies traceability property.

Definition 3.1 (A traceable delegation TD) A traceable delegation TD is a dele-
gation such that identity of any principal(s) prior to Di, where 2 ≤ i ≤ n, that is
IDD1 , IDD2 , ..., IDDi−1

are uniquely identifiable through examining the DTs it
receives (i.e. DTD1→D2 , ..., DTDi−1→Di

).
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A traceable delegation is typically also accountable if cryptography measures
are in place to allow other principals to verify the identity of any principals prior
to itself. If a delegation is accountable, we also say that the delegation satisfies
the accountability property.

Definition 3.2 (An accountable delegation AD) An accountable delegation AD
is a delegation such that identity of any principal(s) prior to Di, where 2 ≤ i ≤ n,
that is IDD1 , IDD2 , ..., IDDi−1

are not only uniquely identifiable but also crypto-
graphically verifiable through validating the DTs it receives (i.e. DTD1→D2 , ...,
DTDi−1→Di

).

A TD is not always accountable, but a AD is always traceable. That is, trace-
ability is a necessary but not sufficient condition of accountability. An accountable
delegation is also called a non-repudiated delegation.

A restricted delegation is one that the delegator can specify delegation policies
over the delegation.

Definition 3.3 (A restricted delegation RD) A restricted delegation RD is a del-
egation such that any principal Di, where 1 ≤ i ≤ n− 1, can impose delegation
policy PDi→Di+1

upon the delegation.

However, not all the delegation solutions satisfy all three properties. For in-
stance, the proxy certificate approach does not support traceability or account-
ability because the identity of the principals along a delegation chain is lost in
the delegation process. In the rest of this chapter, we describe how the DToken
architecture satisfies all three properties.

3.3 Overview of the Architecture
In its basic form, delegation is defined as a relationship between two parties: a
delegator and a delegatee, where the delegator initialises the delegation and the
delegatee accepts it. This is often achieved by two parties jointly forming a pair of
delegation credentials which consists of a (public) delegation token and a (private)
delegation key.

Through the delegation token, the DToken delegation architecture presented
in this chapter allows a machine to check whether a user has delegated to one (or
more) machine(s) without directly contacting the user or any trusted online third-
party service. In a large-scale distributed environment, this is an important feature
that allows the system to cope with scalability requirements (e.g. thousands of
users who may concurrently access many services). This architecture is similar to
that implemented by Kerberos [5], DSSA [4], and GSI [1]. The major differences
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are briefly highlighted as follows. Kerberos requires the presence of an online
trusted third party to initiate the delegation. Because the use of public key cryp-
tography, this is not a requirement for DSSA, GSI, or our solution. In addition,
DSSA and GSI require the generation of public key pairs (public key and private
key) at every intermediate principals in the delegation chain on a session basis.
The main argument for employing fresh key pairs in a delegation chain in DSSA
and GSI is to minimize the risk of a compromised principal [4, 2, 1].

The DToken architecture has several features that differentiates it from the ex-
isting solutions. It allows any non-originating principals in a delegation chain to:
1) extract the identity of all the principals prior to itself from the delegation to-
kens passed down through the chain, thus providing the traceability property of
the chain; 2) verify whether any intermediate principals has actually accepted the
delegation via a dual digital signature scheme , thus providing non-repudiation
or accountability property of the chain; 3) determine whether it accepts (or re-
jects) any ancestor principals in the chain based on its own local trust policy (e.g.
which CAs it trusts) without directly communicating with them; and 4) manage
delegations with their existing long-term credentials (i.e. long-term certificate and
private key) without the need for managing newly generated key pairs (or short-
term certificate and private key pairs).

To the best of our knowledge, all these features are not present in any of the ex-
isting public key cryptography based delegation solutions. Because of the absence
of these features, all the existing solutions place significant trust assumptions upon
principals in a delegation chain. In practice, this can hinder its practical deploy-
ment in wide-scale cross-organization deployment environment if the level of trust
upon these principals is of a concern.

For example, in the conventional solutions (e.g. [4, 1]), all intermediate prin-
cipals have to be trusted to eliminate their local private (delegation) key when
a delegation is no longer needed. Details are not given on how an intermediate
principal determines when a delegation is no longer needed, leaving a window of
vulnerability for the delegation between the time which a principal becomes com-
promised and when the principal deletes the private key. An implicit assumption
arising from this is that as long as the delegation chain is valid, all the intermediate
principals should remain trusted (i.e. the dynamically generated private delega-
tion key and the permanent private key of an intermediate principal are not com-
promised). As pointed out by Broadfoot and Lowe [6], a) this trust assumption
is a very restricted one when employing this delegation architecture in a practi-
cal environment, such as the Internet; and b) without this assumption, the DSSA
delegation architecture is rendered insecure. Because we do not employ freshly
generated key pairs, our proposal does not suffer from this problem.

Second, all the intermediate principals also have to be trusted to maintain a
persistent association between the newly generated key pair and the dynamically
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generated process at an intermediate principal. In DSSA [4], a principal is a
universal abstraction of different types of principals, such as user, workstation,
process, system, or server. But, in practice, there is a fundamental difference be-
tween these principals in the way they are named (identified) and certified (i.e.
issuing of public key identity certificate). Unlike the other principals, a process
is a dynamic entity generated by a computer system which does not have a per-
manent global identifier (or name). Therefore, unlike a user or a machine, which
can be issued a certified identity certificate, it is impossible to associate a process
(which doesn’t have a persistent global identity/name) with a public key pair. It is
unclear how the DSSA delegation architecture resolves such an issue. In contrast
to DSSA, GSI explicitly acknowledges the problem of identifying a dynamically
generated process. It identifies the process with Distinguished Name (DN) dy-
namically generated from the human-readable DN of the delegator extended with
the hash of the dynamically generated public key for the session. However, within
a computer system, the identifier of a process, that is its Process IDentifier (PID)
is managed locally. Therefore, it is still ultimately down to the intermediate prin-
cipals to maintain a persistent association between the PID and the DN of the
process. Again, we still have to assume the trust of the intermediate principals.
Therefore, we reach the conclusion that it is unclear how the freshly generated
key pair helps to reduce the level of trust required on the intermediate principals.

Thus, from our point of view, the advantages of using fresh public key pairs
in the DSSA’s and GSI’s delegation architectures are not clear. Instead of using
the fresh key pairs, we propose to exploit the permanent key pair associated with
each intermediate principal to support the delegation. The major advantages of
our approach is two fold: a) we elminate DSSA’s and GSI’s need for key pair
generation to avoid the major performance bottleneck suffered by these systems;
and b) the persistent association between a dynamically generated process and
the key pair is no longer needed. In our solution, because there is no freshly
generated key pairs, managing the association between a delegation token and
dynamically generated processes remains the internal problem of the services in
a delegation chain. In addition to the performance gain, the elimination of key
pair generation from the DToken delegation process also makes our approach less
vulnerable to Denial-of-Service (DoS) attacks, one of the major security concerns
of proxy certificate.

3.4 A Single-level Delegation
A single-level delegation is a special case of a chained delegation where there
is one intermediate principal between the originating and final principals. It is
also a fundamental representative case which is used here to explain some of the
important features of the DToken architecture. The delegation example used in
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CG, KG CJQS, KJQS

Gateway G Job Queue System JQS

User 1. Mutual Authentication 3. Mutual Authentication

2. Generate DTU -> G 4. Pass DTU -> G

CU, KU

Trusted Machine TM: 

his own computer

0. Login

Figure 1: Single-level Delegation in a Gateway-style Distributed System

this section involves three machines: a user machine TM , a client machine C,
and a Job Queue System (JQS). TM is a trusted machine (e.g. the user’s smart
card or an online credential repository) of the user and it is where the user’s long-
term public key identity certificate CU and private key KU reside.

We describe the process of single-level delegation between U and C through
a joint creation of a DToken and how the DToken is used between C and JQS.
In the model, we use a single abstraction C to represent the intermediate princi-
pal between TM and JQS. In practice, the nature of C has an impact on how
the system should be designed. Therefore, our presentation will be split into two
parts to deal with the following cases: 1) C is a trusted gateway G into the system
where G holds its long-term certificate CG and private key KG; and 2) C is a pub-
lic/shared (i.e. untrusted) public computer PC, where PC has CPC and private
key KPC .

3.4.1 The Gateway Case

As illustrated in Fig. 1, in this scenario the gateway G has a persistent process
running as a daemon of the distributed system, typically to support batch job pro-
cessing. This is a typically architecture style for implementating Grid systems.
Accessing to system services (e.g. JQS) needs to go through this gateway.

Creating a Process on the Trusted Machine U authenticates to TM following
the local procedures. Once logged in, TM starts a local process PrTMu running
on behalf of U allowing it to use the user’s long-term credentials (i.e. CU and
KU ) to interact with G. It is worth noting that on some systems, apart from being
protected by local file system protection mechanisms (e.g. the file permission
bits), KU may also be protected by a user specified password. In order to use KU

to respond to the key challenge posed by G, U needs to demonstrate its knowledge
about that password. As these are the details of the authentication between U and
TM , not directly relevant to the delegation process, we have omitted them from
the Figure.
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First-level Mutual Authentication The gateway typically deals with concur-
rent requests from different users simultaneously. Before the delegation takes
place, U and G need to mutually authenticate with each other to ensure that U ’s
identity is certified by a trusted CA of G and vice versa. Similarly, U could initiate
multiple concurrent connections with G, for example, to access different types of
services (e.g. file accessing, job processing) provided by the system.

Although there are well-established protocols in practice, such as SSL or TLS,
to support mutual authentication under PKI, we need the concept of delegation
session to differentiate the concurrent delegations, with different delegated rights
and constraints, that may occur between U and G. It is also worth noting that
although SSL/TLS has a concept of session, it is not suitable for our purpose
because it is designed for reusing SSL parameters (e.g. encryption and digital
signature algorithm parameters) so that the need for renegotiating SSL parameters
can be reduced.

As part of the mutual authentication process, G needs to send a key chal-
lenge to U to ensure that U is indeed the holder of KU and vice versa. It is also
worth noting that the SSL/TLS protocol not only exchange the end entity certificate
(EEC) of communicating parties, i.e. CU and CG, but also all the subordinate CA
certificates (but not the root CA certificate) of the EECs. The root CA certificates
should be installed through trusted offline means by the administrator of TM and
G prior to the communication beginning.

We denote all the subordinate CA certificates of CU as CUsCAs
and those of

CG as CGsCAs
. Therefore, at the end of the mutual authentication process, G has

CU and CUsCAs
whilst U has CG and CGsCAs

.

Creating a Process in the Gateway Once U and G are mutually authenticated,
G starts a local process PrGu running on behalf of U . As this is a local process
to G, it has access to G’s long-term credentials (i.e. CG and KG). KG will be
used in the next step to sign the DToken. Although this process is created as
a form of delegation from U to G and is associated with (the identity of) U , it
doesn’t have any associated delegated rights since U has not yet been involved in
the delegation.

Generating a DToken between the User and the Gateway The creation of
a DToken representing the delegation from U and G is a joint process between
PrTMu and PrGu over the mutually authenticated channel created in the previous
step. U needs to authorize the delegation by signing the delegation information
IU→G with his private key KU and G needs to accept the delegation by signing
IU→G with its private key KG. IU→G consists of two parts: the information pro-
vided by U and that assigned by G. The former includes CU , CG, Vfr, Vto, TS,
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Dtoken: single-level delegation

A Dtoken DTU -> G CU CG Vfr Vto TS PU -> G CUsCAs

Delegation information Delegation Sig

DSU -> G

CA certs

SigU SigU -> GA Dtoken DTU -> G

from U to G:

SigU -> G = <<IU -> G>KU
>KG

<IU -> G>KU
: U authorizes G to act on behalf of himself

<<IU -> G>KU
>KG

: U authorizes G to act on behalf of himself and G acknowledges that U can 

access the resources managed by G. 

CU CG Vfr Vto TS PU -> G

IU -> G

CUsCAs
DSU -> G SigU SigU -> G

Figure 2: The format of a DToken DTU→G from U to G in the Single-level Dele-
gation. What is showing here is the format but not the actual content of the token.
The content of the DSU→G is initially empty and will be filled by G in Setp 2 of
the protocol of generating a DToken.

PU→G and the latter the delegation session identifier, denoted as DSU→G.
The signature from G is important for providing the accountability (non-repudiation)

of the DToken because U can have all the information, except DSU→G, in IU→G

without interacting with G because it is all supposed to be “public”. < IU→G >KU

is the digital signature of the information provided by U signed by KU . However,
when G generates SigU→G by signing < IU→G >KU

with its private key KG,
it cannot deny its acceptance of the delegation, providing accountability for the
delegation. As illustrated in Fig. 2, a DToken DTU→G consists of three pieces
of information: delegation information IU→G, delegation signatures SigU and
SigU→G, and U ’s intermediate CA certificates CUsCAs

, where SigU→G is the joint
signatures of IU→G signed by KU and KG sequentially. It should be noted that
when IU→G is sent from U , DSU→G is empty. It is filled by G before IU→G is
countersigned by G. The protocol for generating a DToken is as follows.

1. U → G: send a message containing two pieces of information: a tuple
IU→G and SigU , where IU→G consists of: (CU , CG, Vfr, Vto, TS, PU→G,
DSU→G) and SigU is the digital signature of IU→G signed by KU , that is
< IU→G >KU

. Note that at this stage, the DSU→G field is empty awaiting
to be assigned by G.

2. G: verify the validity of the message and check with its local access control
policies to ensure that U is authorized to access the resources (e.g. to per-
form the operations specified in PU→G). When the checks are successful,
G fills DSU→G and signs SigU , plus DSU→G, with KG. This signature is
denoted as SigU→G. Together with CUsCAs, which is received from the first-
level mutual authentication step, G can now generate a DToken DTU→G.
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Dtoken: Generation and Verification
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Figure 3: The Generation and Verification of a DToken.

3. G→ U : send DTU→G.

There are a few points worth noting about the above protocol. In step 1),
by signing IU→G with KU , that is, producing SigU , U authorizes G to act on
its behalf. In step 2), by signing SigU with KG, that is, producing SigU→G, G
acknowledges that it has performed the validity check of IU→G and U is authorized
to access the resources governed by G. For the convenience of referencing, Fig.
3 illustrates the major steps involved in generating and verifying (the integrity of)
a DToken. For clarity, the principals and their interactions are omitted from the
Figure. Also, in step 2), there is no need to check the authenticity of U because
that has been confirmed in the first-level mutual authentication. Also, there is
no need to sign CUsCAs as part of the digital signature production process because
they are already crytographically signed and thus protected. The reason to include
CU and CG in IU→G is to include the identity of U and G in the delegation token
so that they are cryptographically verifiable by anybody receiving the token.

In addition, we only require the underlying communication channel to be mu-
tually authenticated. There is no need to ensure the confidentiality of the infor-
mation being exchanged over the channel as all the information in the DToken is
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“public” and its integrity is ensured by digital signature. To use DTU→G for exer-
cising delegated rights, a principal needs to prove that it is the legitimate delegatee
of the DToken by demonstrating access to the corresponding private key (in this
case, it is the private key KG). This leads us to the next step.

Second-level Mutual Authentication The second-level mutual authentication
takes place between G and JQS, the final principal in the delegation chain. The
purpose of this step is to ensure that G submits the job request on behalf of U to
a G trusted job service - JQS. Similarly, JQS needs to ensure that the request
is from a trusted gateway - G. Here, trust means that when a principal submits a
certificate, the receiving principal needs to ensure that the certificate is issued by
a trusted CA of its own choice.

Similarly to the first-level mutual authentication, we can use SSL/TLS to sup-
port this step. If everything goes well, at the end of this step, the following facts
about G and JQS are established: G is the authentic holder of KG and JQS is
that of KJQS . G has CJQS and CJQSsCAs

; whilst JQS has CG and CGsCAs
.

Passing and Verifying a DToken Over the mutually authenticated channel be-
tween G and JQS, G submits a job request along DTU→G. It is worth noting that
the root CA certificate of U is not sent to JQS. It is down to JQS to install it
through trusted offline means to ensure its authenticity and integrity.

The subordinate CA certificates allow JQS to perform two checks: a) whether
he trusts the CAs (all the subordinate CAs) of U . If not, he will refuse to execute
the operations specified in the DToken. b) whether the CU embedded in the DTo-
ken is authentic without relying on (or trusting) the intermediate principal G. This
is an important feature that differentiates our delegation scheme from any of the
existing public key cryptography based delegation schemes, such as proxy certifi-
cate and the DSSA delegation scheme. This feature reduces the risk of the entire
system being compromised even if G is compromised as JQS does not need to
trust (or rely on) G to perform the above checks.

Recall that after the mutual authentication between G and JQS, JQS can be
sure that he has a genuine copy CG. JQS can ensure the authenticity of CU by
using CUsCAs

(extracted from DTU→G) without directly interacting with U . De-
manding a direct interaction between the final principal (i.e. JQS in this case) and
the originating principal (i.e. U ) hinders the scalability of the system because U
can become the bottleneck of the system when delegation is a frequent operation
in the system. Therefore, this feature enhances the scalability of the system. In ad-
dition, a direct interaction between JQS and U implies that U needs to be online
to response to the request from JQS (or any intermediate and final principals),
and could lead to poor system usability.
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Figure 4: Single-level Delegation through a Public Computer

As illustrated in the right of the Fig. 3, JQS verifies the integrity of the
DToken as follows:

1. extract IU→G SigU , and SigU→G from the DToken
2. decrypt SigU→G using CG

3. compare the output of step 2) with the hash of SigU
4. decrypt SigU using CU

5. compare the output of step 4) with the hash of IU→G

It is worth pointing out that in the last step, IU→G is the initial content that U
has sent to G where the field DSU→G is empty. If the comparison results of step
3) and 5) are equal, it is not only that the signatures are valid, but also implies the
followings:

• Verification 1: the integrity of the DToken is verified.
• Verification 2: G is the authorized to use the DToken. In the second-level

mutual authentication step, a two-way key challenge is performed to ensure
G holds KG and JQS has KJQS . Therefore, when the integrity of the DTo-
ken is verified, it automatically implies that G is authorized to use it. If not,
G would have failed the key challenge in that step.
• Verification 3: the delegation chain (U → G→ JQS) is valid. Verification

1 implies U authorizes G to act on his behalf and G validates that U is
authorized to use the resource governed by G.

3.4.2 The Public Computer Case

Fig. 4 illustrates the scenario that U accesses JQS through a public computer
PC. Here, the settings are largely similar to those in the gateway case where PC
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and JQS have their long-term credentials installed locally. This is represented as
the pairs (CPC , KPC) and (CJQS , KJQS) respectively. The method for accessing
U ’s long-term credentials are different from that in the gateway case. Instead of
putting his long-term credentials (i.e. CU and KU ) at PC (which is too risky),
U stores them at his trusted machine TM , such as an online credential reposi-
tory (e.g. MyProxy) or his smart card. Because his long-term credentials are not
present at PC, U cannot directly access the services on JQS. He therefore needs
to delegate his rights to PC so that it can access the remote services provided by
JQS on his behalf. Because of the risky nature of PC, such a delegation has to
be conducted on a session (short-term) basis. It would be ideal that once U logs
out from PC, the delegation relationship between U and PC is automatically
deactivated. This means that PC cannot abuse the delegation after U ’s session
completes.

Creating a Process on the Public Computer U needs to first login to PC fol-
lowing the local authentication procedure supported by PC. Once U successfully
logs in to PC, a local process PrPCU

is created on PC for U . Because it is local,
it has access to PC’s long-term credentials CPC and KPC . It is worth noting that
the authentication between U and PC takes place locally without involving any
remote service. Then, he needs to authenticate to TM to access his long-term
credentials by responding to the challenge presented by TM , for example, using
his username and password shared with TM . We believe this is a reasonable as-
sumption in practice. In fact, myProxy is implemented in this way to enhance
the usability of online credential repositories by eliminating the need for users to
manage their own long-term credentials.

First-level Mutual Authentication Here, the first-level mutual authentication
means the authentication between the user U , who has access to CPC and KPC ,
knows about his username and password on TM , but doesn’t have his own long-
term credentials. This is different from the gateway case, where the authentication
is between TM , who has U long-term credentials, and the gateway machine G.
The mutually authenticated channel created in this step is based on the shared
password between U and TM . A mutually authenticated channel protects the
user from an impersonating server and vice versa. There are well established
challenge-response techniques to build a mutually authenticated channel using
a shared secret between two communicating parties, see for example, the MS-
CHAP v2 protocol [8]. Such a protocol ensures the authenticity of both commu-
nicating parties without requiring cleartext passwords to be transmitted over an
insecure network.
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Creating a Process on the Trusted Machine Once the first-level authentication
is successful, TM starts a local process PrTMU

running on behalf of U . This
process has access to U ’s long-term credentials CU and KU .

Generating a DToken between the User and the Public Computer Similar to
the gateway case, the creation of a DToken representing the delegation from U to
PC is a joint process between PrTMU

and PrPCU
over the mutually authenticated

channel created in the previous step. However, unlike the standard SSL channel
used in the gateway case, this channel is not based on PKI, but based on the shared
password between U and TM . Here is the protocol for generating a DToken in
the public computer case.

1. PC → TM : send CPC

2. TM → PC: send IU→PC , SigU , and CUsCAs
, where IU→PC consists of:

(CU , CPC , Vfr, Vto, TS, PU→PC , DSU→PC), where SigU is < IU→PC >
KU , and CUsCAs

is the all the subordinate CA certificates of CU .
3. PC verify the validity of the message. If it is valid, it fills DSU→PC and

signs SigU with KPC . Together with CUsCAs
, PC can now generate a DTo-

ken DTU→PC .
4. PC → TM : send DTU→PC .

The rest of the protocols, namely Second-level Mutual Authentication, Pass-
ing and Verifying a DToken, and Reusing a DToken, are the same as that in the
gateway case.

3.5 Chained Delegation

For both single-level delegation cases described in the previous section, the del-
egation can be further extended to a chained delegation, where the delegation
depth is greater than one. Fig. 5 illustrates a chained delegation U → G→ JQS
through a gateway computer G, where the delegation depth is two. This case
extends the single-level delegation scenario presented in Fig. 1 to a remote file
system FS, which becomes the final principal of the chain. Instead of only exe-
cuting a job at JQS, in this scenario a running job at JQS needs to access U ’s
files stored at FS. In addition to the steps presented in Fig. 1, three more steps, il-
lustrated by steps 5, 6, and 7 in Fig. 5, are needed to extend the delegation. These
steps are the interactions between computers G, JQS, and FS.
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Figure 5: Chained Delegation through a Gatway Computer in a Distributed Sys-
tem

3.5.1 Generating a DToken between the Gateway and the Job Queue Sys-
tem

As illustrated in Fig. 5, before JQS accesses FS for U ’s files, it needs to obtain
a DToken from G so that it is authorized, by G - the delegatee of U , to perform
file operations on behalf of U . This extends the original delegation U → G to
U → G→ JQS.

It is worth noting a few settings as a result of steps 3 and 4 in Fig. 5 before
moving on to describe steps 5 to 7. As a result of step 3, G has CJQS and all the
intermediate CA certificates of CJQS; whilst JQS has CG and all the intermediate
CA certificates of CG. As the end of step 4, G and JQS both have DTU→G. Here
is the protocol describing the interactions of step 5 between G and JQS:

1. JQS → G: request to extend the delegation chain U → G to U → G →
JQS.

2. G: send IG→JQS , SigG, and CGsCAs
, where SigG = < IG→JQS >KG

.
3. JQS → G: JQS verifies the validity of the message. If it is valid, it inserts

DSG→JQS and signs SigG with KJQS . Together with CGsCAs
, JQS can now

generate the DToken DTG→JQS .
4. JQS → G: send DTG→JQS .

3.5.2 Passing and Verifying the DTokens

In step 7, two DTokens DTU→G, DTG→JQS as the proof of the delegation chain
U → G→ JQS are passed along with a file accessing request from JQS to FS.
It is also worth noting that the root CA certificate of U , G, and JQS is not passed
to FS as part of the DTokens. These root CA certificates are installed by FS itself
through trusted means to ensure that it can verify the integrity of CU , CG, CJQS ,
and also the delegation chain without depending on the trustworthiness of G and
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JQS. This is an important property differentiating our approach from any of the
existing delegation architecture.

3.6 Evaluation
We have produced a prototype implementation of the DToken solution using the
OpenSSL toolkit. The main goal of this prototyping exercise is to investigate
the performance implications of creating and verifying DTokens, which are the
major operations involved in the architecture. The evaluation focuses on a single-
level delegation, in which the size of delegation tokens is trivial (less than 3kb).
Therefore, in this case, the communication costs involved in the delegation is
clearly not significant. The preliminary evaluation results are encouraging. With
typical certificate key sizes, we demonstrate that DToken consistently outperforms
the popular de-facto Grid delegation solution - proxy certificate.

Experimental Environment All the experiments are conducted on a Ubuntu
OS (8.10) running on top of a virtual box (2.1.4). The host machine is a DELL
latitude E6400 laptop with Intel Core 2 Duo Processor (2.8GHz) and 4G memory.
The prototype is written entirely in C, is compiled using GCC (4.3.2) and depends
solely on the OpenSSL toolkit (0.9.8). The GSI proxy certificate performance
data was collected using the command grid-proxy-init of the latest globus
toolkit (4.2.1). The source program of this command was slightly modified to in-
clude performance measuring procedures. All the performance data was collected
by repeatedly executing the programs for one hundred times and the average costs
of the one-hundred runs are presented here.

Results Fig. 6 illustrates the major performance costs, namely creation and
verification of delegation tokens, involved in a single-level delegation scenario.
The overall cost of creating a DToken, the major cost of the DToken delegation
architecture, is roughly 1/3, 1/5, and 1/10 of that of creating a proxy certificate
when the certificate key size is 512, 1024, and 2048 bits, respectively. These
results demonstrate that our proposal provides significant performance gain over
the proxy certificate approach. On the one hand, because there is no more fresh
key pair generation in the DToken architecture, this outcome is well expected.
On the other hand, it also shows that our proposal could be less vulnerable to
DoS attacks in practice because the cost of creating a delegation token in our
architecture is only a fraction of that of generating a proxy certificate.

The results also show that the verification cost involved in both solutions are
significantly less than that of the creation cost. For example, when the key size is
2048 bits, the verification cost of a token in DToken is approximately 10% of its
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Figure 6: Overall Performance Cost Comparsion between DToken and GSI (Proxy
Certificate).

creation cost. With the same key size, the verification cost of a proxy certificate
in GSI is less than 2% of its creation cost. This suggests that the creation cost of a
delegation token in both solutions is the major cost. From a performance point of
view, the longer the key the less we should be concerned with the cost of verifying
a delegation token. Therefore, in the future studies, we could focus on the creation
cost of a delegation token, rather than the verification cost.

In addition, the figure indicates that the creation cost of a DToken of key size
2048 bits is comparable to that of a proxy certificate of key size 512 bits (a typ-
ical setting in the current Grid deployment environment). From a performance
perspective, it suggests that it is much more affordable to employ highly secure
cryptography keys (e.g. of key size 2048 bits) in the DToken architecture than in
GSI. From a security point of view, the vulnerability introduced by employing the
DToken architecture (i.e. all delegation chains share the long-term credentials of
a principal) can be lessened by the use of highly secure keys.
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3.7 Discussion

DToken is a new type of delegation technology. It is new because it represents
a new paradigm in distributed delegation. This section look closely at the differ-
ences between DToken and the conventional approaches.

3.7.1 Differences in definition

Our definition of delegation is different from the conventional one adopted in the
distributed systems community. In all the existing public key cryptography based
delegation work (e.g. [4, 5, 1]), it is the delegatee who initialises a delegation
request. This is done by the delegatee who generates a delegation token (and a
private delegation key) and sends the token to be signed by the delegator. If the
delegator authorises the delegation, a signed token is sent back to the delegatee.
By using the (signed) token and the key, the delegatee is able to prove to others
that the delegation is authorised by the delegator. Because the request is initialised
from the delegatee, implicitly, the delegatee accepts the the relationship. In our
work, the delegation relationship is started by the delegator who approaches the
delegatee with a partially generated delegation token addressing to the delegatee.
Deciding whether the delegatee should be delegated, what to delegate (e.g. rights
and obligations) to the delegatee, how the delegation (e.g. length of delegation,
constrains) should be, is the responsibility of the delegator. This is a mimic to
the real world delegation scenario where a person at a high point of authority
approaches another at a lower point of authority expressing an intention of dele-
gation. If the delegatee accepts the delegation, a complete delegation token is sent
back to the delegator.

Our definition of delegation is also more restricted than that of conventional
delegation in that both parties need to explicitly agree upon the relationship. Oth-
erwise, neither party will be able to use the delegation token in anyway. For ex-
ample, the delegator cannot prove that the delegatee has accepted the delegation.
Also, nor can the delegatee proven that the delegatee has delegated to it. Once the
protocols are complete, others can verify two things with the token: the delegator
has authorised the delegation and the delegatee has accepted it. However, in the
existing public key cryptography based delegation work, the implicit acceptance
from the delegatee is lost in the protocol in the sense that no information about the
delegatee can be derived from the delegation token, such as proxy certificate2 .

2It is possible to embed the information of the delegatee in the policy field of a proxy certificate.
However, according to the specification of proxy certificate, the policies are added by the delegator,
not the delegatee. Therefore, the delegatee can repudiate whether he has initiated the request.
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3.7.2 Differences in the role of delegatee

Let us examine what makes DToken a new delegation architecture. In a DToken
Grid world, an delegator submits a job to the delegatee with a Dtoken, which can
be used by the delegatee to request resources without the intervention from the
delegatee. Hence, there is no need for the delegatee to perform a callback to the
delegator to request a delegation token. However, this is a must in the conventional
approaches, such as proxy certificate. Architecturally, in a proxy certificate Grid
world, this means that a trusted third party, typically played by a MyProxy server
[10], is needed to deal with the callback. This is not a requirement for DToken.

However, it is worth noting that MyProxy also facilitates another role: to sup-
port renewal of delegation token. This is important feature for supporting long
running jobs. At this point, we haven’t decided how the renewal protocols of
DToken should work. This remains as part of the future investigation.

3.8 Conclusions and Future Work
This chapter presents the DToken solution, a novel delegation architecture, to ad-
dress the major well-known limitations of existing delegation solutions. Although
some of them are being widely used in practice, the limitations remain open in
the literature until now. We have presented the detailed protocols of the DToken
architecture and described the preliminary performance evaluation of a prototype
implementation. We show that it outperforms significantly than the existing pro-
duction quality Grid delegation solution - proxy certificate in GSI.

The work presented in this chapter have been implemented within the project.
DTokens will be used to support delegation within XtreemOS with the advantages
described in this chapter. These advantages will allow XtreemOS to support more
efficient and scalable distributed delegation.

Limitations The chapter has focussed on presenting DToken protocols in single
level delegation, where the delegation depth is one, and chained delegation where
the delegation depth is two. When the delegation chain extends further (delegation
depth > 2), additional mechanism is required to ensure the uniqueness of the del-
egation path from the originating principal and the final principal. In other words,
in the current version of DToken, it is possible to construct multiple delegation
paths when delegation depth > 2. This will be investigated in the future extension
of this work.

The prospect of the technology DToken is a set of protocols describing the
delegation relationship between two or more parties. Contrast to existing dele-
gation protocols, it offers an additional property regarding the delegation chain:
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non-repudiated traceability. This is an important property for open distributed
systems, such as Grids, where the system components are composed by geograph-
ically dispersed organisations under diverse administrative domains. It can be
used as an replacement of proxy certificates. It is worth noting that a presumption
of the environment where proxy certificate is used is PKI and we also have this re-
quirement. In theory, it can be used to enhance trustworthiness of the Single Sign
On (SSO) technology of XtreemOS [11] which is being developed in parallel in
our work package.
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4 Interoperability across XtreemOS and gLite plat-
forms

Grid computing deals with interoperability by using standard general-purpose pro-
tocols and interfaces. This chapter describes the experience of interoperability be-
tween XtreemOS and gLite, a middleware that has been developed in the EGEE
project and it is widely used by the European scientific community.

From the point of view of security, we have analysed interoperability along
three axes: certificate management, security policies and virtual organisation man-
agement. To illustrate interoperability in practice, we have developed a virtual
marketplace of computational resources, using resources from XtreemOS and
gLite Grids.

The structure of the chapter is the following. Section 4.1 describes the in-
teroperability challenges in certificate management. Then, Section 4.2 analyses
interoperability for security policies. Section 4.3 discusses interoperability in VO
management. Finally, section 4.4 presents the interoperability case study; includ-
ing also other challenges such as programability and job management.

4.1 Interoperability Challenges in Certificate Management
Security in both XtreemOS and gLite is based on the concept of public key in-
frastructure (PKI). Each entity user in the PKI environment possesses a public
and a corresponding private key. Central to PKI is the concept of certificates,
which are used to validate the user and the public key associates with the user,
and Certification Authority (CA), who issue these certificates.

In the case of the certificate management, one important interoperability issue
is the structure (type) of a certificate. Most Grid systems, including XtreemOS
and gLite, have selected the X.509 format as the standard one. A typical X.509
certificate consists of the following information.

• The version of X.509 that has been used.

• The information about the user or the issuing CA.

• The algorithms used to compute the signature of the certificate.

• The subject whose public key is being certified.

• The validity of the certificate which indicates the time for which the certifi-
cate is valid.

• The public key information.
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• The signature field which is actually a hash of the above information signed
by the CA’s private key.

• In addition, there are some optional fields and extensions to customise the
certificate.

In relation to XtreemOS and gLite, their X.509 certificates differ in the op-
tional fields and extensions. Structure of the gLite certificate is presented in
[22]; gLite certificates follow the standard extensions, including ’CA revocation
URL’ extensions. Structure of the XtreemOS certificate is presented in deliverable
D3.5.9. XtreemOS certificates contain non-standard extensions to carry informa-
tion about a user’s VO attributes.

It is worth mentioning that gLite Grids use Proxy certificates to interact di-
rectly with a remote service (i.e. to achieve single sign-on and delegation). Proxy
certificate consists of a new public/private key pair, signed with the user’s per-
sonal certificate with a subject name. XtreemOS uses X.509 certificate with its
own extensions. Proxy certificates are not used in XtreemOS.

4.1.1 Meeting the Certificate Management Challenges

In order to meet the certificate management challenges, we have developed a cre-
dential conversion service that acts as a gateway converting a gLite certificate into
a XtreemOS certificate. In our case, the gateway validates gLite certificates pro-
vided by the UK National Grid Service, converting them into valid XtreemOS
certificates. Certain user information is copied from the gLite certificate to the
new XtreemOS certificate, including information about the primary VO.

4.2 Interoperability Challenges in Security Policies
There are several challenges that may rise with the interoperability of security
policies. We summarise these below.

• Language issues: Different Grid systems may have different security policy
languages used to control their Grid resources. This means that achieving
interoperability with those Grids will require a translation of the policy lan-
guages. Different languages have different expressivity levels, so this is
not a straightforward to tackle challenge. In the current implementation of
XtreemOS VO Policy Service (VOPS), we adopt a XACML 2.0 [16]. In the
case of gLite, authorisation at resource level can be achieved with XACML
using some of the current available XACML Policy Decision Points.

• Ontology issues: The change of domains may also imply changes in their
administrative structures. For example, the roles adopted in one VO may
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be different from those adopted in others. Even if two VOs had similar
roles, it could be the case where the same role is mapped to different sets of
permissions in the different VOs. Therefore, the challenge here is to map
policy ontologies from one Grid system to another.

• Enforcement issues: There are several stages at which security policies can
be enforced, such as selection-time, access-time, usage-time and release-
time. Interoperating with other middleware systems implies that some no-
tion of negotiation of enforcement stages must be reached. Policies written
for selection-time enforcement may not be sufficiently strict or relaxed to
deal with access-time or usage-time control. Therefore, an agreement must
be reached as to when a policy will be enforced in the new domain, and if it
is not possible to enforce it at its expected stage, whether it can be changed
for other policies at other stages.

In our interoperability case study, both XtreemOS and gLite are using the
XACML language for security policies. Therefore, there is not interoperability
problems at language level. We will be analysing ontology issues in the next sub-
section. Let us now discuss enforcement issues. Security policies in XtreemOS
are classified into four main categories:

• User Policies are specified by the VO users in order to determine the suit-
ability of VO resources to run their jobs. The purpose of these policies is to
protect users data and jobs.

• Resource Policies are security policies set by the local resource administra-
tors to control access and usage of their resources by the VO users.

• VO Policies are specified by the VO owners or managers to determine what
is acceptable behaviour in the VO. VO policies are different from user or
resource policies in that they provide general rules at the level of the whole
VO rather than a specific user or resource belonging to a specific adminis-
trative domain.

• Filtering Policies are created by matching user and VO policies. These
policies are then evaluated at selection time to ensure that the resources
selected are suitable.

Traditionally, security policies are enforced at access time according to some
model of security [12, 13]. More recently, it has been suggested that policies can
also be controlled at runtime to enforce a well-behaved usage of resources [14,
15]. This also includes cases where policies are enforced at the end of the resource
usage, i.e. at resource release time.
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In XtreemOS, policy enforcement is carried out at two stages: the usual access
control stage in which local policies control access to resources from non-local
VO users, and the selection stage, where filtering policies are enforced by a special
security service called VOPS (VO Policy Service).

User, resource and VO policies of XtreemOS are identical in gLite, but g-Lite
has no concept of filtering jobs based on security policies. In gLite, VOs have a
configurable acceptable use policy that users sign digitally when they request to
join the VO.

4.2.1 Meeting the Challenges in Security Policies

The VOPS service in XtreemOS provides a limited notion of interoperability
within the VO itself, in the sense that it can manage VO policies belonging to
different heterogeneous domains. However, a VOPS runs in the scope of a single
XtreemOS-based Grid. Therefore, when VOs across different Grids are involved,
a single VOPS cannot deal with the heterogeneity of policies across those Grids.

In order to meet the security policy challenges across different Grids, VOPS
will need to have an interface which allow other systems to manage their non-
XtreemOS-compliant security policies. Similarly, if XtreemOS-compliant poli-
cies are to be sent to other systems, these will need to be translated so as to enforce
them in the new Grid domains. These functionalities are areas of future research
and development for the VOPS service.

4.3 Interoperability Challenges in VO Management

A Grid has introduced the concept of Virtual Organisations (VOs). In a VO, dif-
ferent individuals, enterprises, organisations come together to share resources and
services under a set of rules or policies guiding and governing the extent and con-
ditions of sharing. Our discussion of interoperability will cover two main issues:
VO membership management and information security in VO management.

In relation to VO membership management, gLite has pioneered with the cre-
ation of the Virtual Organisation Membership Service (VOMS). VOMS is an au-
thorisation system developed for the European Data Grid as part of the DataGrid
and DataTag projects. In a VOMS system, a user may be a member of as many
VOs as possible, and each VO can be a complex structure with groups and sub-
groups in order to clearly divide its users according to their tasks. A user, both at
VO and group level, may be characterised by any number of roles and capabili-
ties. VOMS uses short lived credential, which includes user information, server
information, and the validity period. Later versions of VOMS include the use of
Security Assertions Markup Language (SAML) tokens.
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XtreemOS has developed its own VO membership management service, which
is part of the XtreemOS VO Management Subsystem (X-VOMS). It is inspired in
VOMS in maintaining the structure of a VO – VO, groups, roles –, but it does
not include capabilities. It also include information about local sites participating
in the Grid; these sites in XtreemOS act as sub-ordinate certification authorities,
authorising the participation of local resources in a VO (the XtreemOS RCA com-
ponent). More information about X-VOMS is available in deliverables D3.5.11.

To deal with interoperability in VO membership management, we need to as-
sociate/map the structure of a VOMS VO with the structure of a X-VOMS VO
(group, sub-groups, roles). This can be achieved by using ontologies. We do not
get into details on the use of ontologies for that, and refer the reader to S-OGSA
[23], a reference architecture for semantic Grids explaining how this kind of map-
pings can be realised.

In relation to information security of VO management, the Grid security model
has been called Grid Security Infrastructure (GSI), which enables secure authen-
tication and communication over an open network. GSI is based on public key
encryption, X.509 certificates, and the Secure Sockets Layer (SSL) communica-
tion protocol. Both gLite and XtreemOS follow GSI, however there are some
differences, as described below.

• Use of Proxy Certificates. gLite use proxy certificates for achieving sin-
gle sign-on and delegation. Proxy credentials are derived from X.509 end
entity certificates, and signed by corresponding end entity private key, to
provide restricted proxy and delegation. By contrast, as stated in section
3, XtreemOS does not need to use proxy certificates for achieving single
sign-on and delegation.

• Authorisation at Resource Level. In gLite, the authorisation of a user on a
specific Grid resource relies on the Virtual Organisation Membership Ser-
vice (VOMS) and a combination of the Local Central Authorization Service
(LCAS) and the Local Credential Mapping Service (LCMAPS). LCAS is
able to make authorisation decision based on request resource, the identity
of the requestor, the VOMS credential, and the proxy certificate. Once the
access control or local authorisation decision has been made, the Grid cre-
dentials are mapped to the local fabric or operating system through LCMAPS.
On the other hand, XtreemOS resource-authorisation relies on X-VOMS;
but as explained above the enforcement decision can be done a resource-
selection time using the VOPS service. XtreemOS is focusing on fine-
grained authorisation, and exploit virtualisation technologies (Linux con-
tainers) to achieve isolation (as described in deliverable D3.5.9. Once a
resource is selected and accepts to run a job, it is created a container to run
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the job, where the container is configured with information from the job de-
scription and certificate (identity of the requestor, X-VOMS attributes such
as VO, group, etc., and usage restrictions such as maximum CPU capacity,
storage and networking access).

These differences can be seen as low-level differences at the infrastructure level.
For the end user, or application developer, they are transparent.

4.3.1 Meeting the Security Challenges in VO Management

The current implementation of XtreemOS X-VOMS does not interoperate with
EGEE VOMS. To achieve such interoperation would require the existence of
mechanisms such as SAGA bindings to deal with both components. However,
we should mention that X-VOMS includes additional functionalities not present
in VOMS, such as the management of resource certification authorities (RCAs) at
the different administrative domains.

4.4 An Interoperability Case Study: A Virtual Marketplace of
Computational Resources

In order to illustrate the interoperability XtreemOS-gLite, we have developed a
system that facilitates the commercialization of Grid resources on-demand through
a virtual marketplace of computational resources, where a seller is capable of list-
ing the Grid resources, and buyer can ask/bid dynamically for required computing
resources for their applications. Our system assumes that resources are available
in a XtreemOS Grid and in a gLite Grid.

The system provides a computational resource auctioning system built upon a
dynamic bid matching algorithm tailored specifically for the trading of comput-
ing power. It helps both consumers and providers of computational resources to
use the resources efficiently so as to maximize the economical benefits and min-
imize the idle time for them. The system is developed to integrate into a single
framework three key features:

• Interoperability is achieved by using a standard programmable interface,
the Simple API for Grid Application (SAGA), to bridge the gap between
existing grid middleware and application level needs. The same system
could run on XtreemOS and/or g-Lite Grids, or interoperate on Grids using
resources from both platforms.

• Cost saving for end users is guaranteed by allocating the applications to the
more economical resource(s), following policies defined by the end users.
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• Dynamic scheduling is achieved through the virtual marketplace, which im-
plements scheduling and trading algorithms that allocates applications fol-
lowing classical performance parameter as well as the cost of resource us-
age.

Figure 7: Architecture to provide the interoperability.

4.4.1 Abstract View of the Virtual Marketplace

Figure 7 illustrates a logical layered architecture of the virtual marketplace, rep-
resenting the entities and their dependency to other entities. The flow of informa-
tion or control is depicted by arrows. An arrow from an entity X to an entity Y
means that X sends information to Y or passes control to Y. Our system offers the
mechanisms for deploying and executing the application (e.g. automatic deploy-
ment, execution monitoring, and hardware resource discovery) for the business
processes to purchase the resources on the Grid. Implementing such a business
model requires at least the following basic roles, which belong to three layers: the
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Grid users application layer, the Virtual marketplace layer, and the Grid resources
layer.

Grid users application layer: This layer allows end-users (scientist, chemist,
physician....) to submit applications to the deployed resources. We consider Grid
application to be a collection of work items to solve a certain problem or to achieve
desired results using the Grid infrastructure. Grid applications can be scientific,
mathematical, academic problems or the simulation of business scenarios, like
stock market development, that require a large amount of data as well as a high
demand for computing resources in order to calculate and handle the large number
of variables and their effects.

Virtual marketplace layer: This layer implements monitoring, trading and
scheduling services so as to utilize the available Grid resources efficiently and
exploit the benefits of the interoperability and scalability of the Grid platform.
This layer consists of four main components:

• Monitor implements the monitoring/reporting techniques, which monitors
resources and reports changes such as dynamic re-allocation of resources,
according to changes generated from evolution in the resource market,execution
status of submitted applications, etc. Monitoring is achieved by either direct
or indirect capture of resource status and pre-defined events. The indirect
interface uses logs generated at run-time by the Grid infrastructure. The
direct interface is a portal collecting dynamically events generated by mon-
itoring services associated to the Grid infrastructure.

• Trader implements the trading algorithms that depends on criteria such as
cost, processing power, execution time or resource availability. It is also re-
sponsible for sending notifications to users about the status of their request.
For example, inform a bidder whether the bid is winning or not.

• Scheduler schedule the application on to the selected Grid resource. Schedul-
ing of the end users application is done on to the selected resource by fol-
lowing the analysis provided by the trader.

• Interface to Grid resources provides simple access for distributed systems
and abstractions for applications and thereby address the fundamental ap-
plication design objectives of interoperability across different infrastructure.
It also supports job submission and data management (efficient data access,
data replication, streaming of data, etc.).

Grid resources layer: This layer consist of the resources (server, storage and
network) used to execute the end users applications. The submitted application is
executed on the selected Grid resources and result is sent back.
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4.4.2 Achieving Inteoperability

Our implementation leverages on existing technologies such as trading algorithms [19,
20], grid middlewares/OS [18, 21] and API 3 for Grid applications [17].

The following solutions have been applied in order to deal with the interoper-
ability issues mentioned above.

• In order to tackle with the differences between XtreemOS certificate and
gLite certificates, we have used a credential conversion service translating
gLite certificates issued by the UK National Grid Service into XtreemOS
certificates.

• At the moment, we are not exploiting security policies. However, any re-
quired security policy will be expressed using the XACML policy language,
such that can be applied in any of the underlying Grid platforms.

• Our system requires that both XtreemOS and gLite Grids to be created sep-
arated previous to the creation of the system. In gLite, we are using a VO
created by the National Grid Service, selecting from a pool of resources of-
fered by the Grid. In XtreemOS, a VO is created using the VOLife Web
front end.

There are other two non-security issues affecting interoperability. One issue is
the language employed for describing jobs. gLite uses the Job Description Lan-
guage (JDL) to describe jobs to be executed in VO resources, while XtreemOS
uses the standard Job Submission Description Language (JSDL). Fortunately, a
translator 4 JSDL to JDL exists so that job can be submitted to any resource irre-
spective of its format. Another issue is related to access the Grid in a program-
matic way. Fortunately, both gLite and XtreemOS use the Simple API for Grid
Applications (SAGA) to access the Grid.

4.4.3 Economically efficient computing

We discuss an abstract business model economically efficient computing, where
the user owns the software that will be executed on the Grid and has the option
to specify the time, cost or hardware resources on which the software should run.
Unit of trade is defined as the number of resources required at any time of the
interval for the fixed amount of time to execute an application. For example, 4
reasources over 3 hours from 09:00 to 12:00 to execute application1.

Format of the bid/bsk: A bid describes the resources required by the buyer.
The resources requirement is specified as: (1) The type of resource (software,

3http://forge.gridforum.org/projects/saga-rg/
4http://grid.pd.infn.it/omii/jsdl2jdl
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processing power, free space, etc.), (2) The number of resources, (3) The start
time of the interval for using the resources, (4) The time duration of using the
resources, (5) The price expressed in £for use of one resource/min, and (6) The
expiration time of the request. If the time limit is reached without the bid being
matched, the bid is removed. For example, User A bids for 4 XtreemOS resources
to be used for 3 hrs, starting at time 8:00, with bid price £0.5, and time limit 18:00.

An ask describes the resources offered, which are specified as: (1) The type
of resources (software, processing power, free space, etc.),(2) The number of re-
sources, (3) The start time and the end time of the interval when the resources
are available, (4) The price expressed in £for use of one resource/min, and (5)
The expiration time of the offer. If the time limit is reached without the ask be-
ing matched, the ask is removed. For example, User B asks for 4 XtreemOS
resoruces to be used for 3 hrs, starting at time 18:00, with bid price £0.5, and time
limit 21:00.

Trading is performed by means of an auction mechanism. The submitted bids
and asks are placed in the bid queue and the ask queue respectively. Each queue is
ordered according to the price and time of submission. The bid queue is sorted in
decreasing order of price, and the ask queue is sorted in increasing order of price.
If two or more orders at the same price appear in a allocated queue, then they
are entered by time with older orders placed above the newer orders. An bid/ask
remains in the queue until it is allocated, removed due to its expiration time or
removed by the submitted user.

The matching algorithm defines how a bid/ask is matched by a set of asks/bids.
The matching algorithm initially computes the candidate matches to an ask by
means of creating a matrix. Each column of the matrix corresponds to a time slot
(i.e. the time interval in which service can be provided). Each row corresponds to
a provider that can offer service now, with the cheapest being on the top row. A
cell of the matrix is marked if the provider can offer computing resources during
this specific time slot. It is the responsibility of the matching module to be invoked
periodically, in order to compute matches and remove expired bids and asks from
the bid/ask queue. The results of the matching procedure are subsequently passed
to the scheduler and the accounting system of the market place.

4.5 Final Remarks

This chapter has studied interoperability issues between XtreemOS and the gLite
middleware. The use of standard protocols and interfaces, such as X.509 cer-
tificates, XACML policies or APIs such as SAGA, has helped in achieving such
interoperability. However, there is additional work required in order to reach a
full interoperation between XtreemOS and other Grid middleware.
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We have also introduce an example of interoperability through a virtual mar-
ketplace of computational resources. Our example answers questions such as
"which Grid should be used that will minimize cost along with achieving efficient
applications’ execution time?", "how end-user can select Grid resources according
to pre-defined policies, including cost policies?" and "how to achieve interoper-
ability when using gLite and XtreemOS platforms?". Our trading system provides
a portal for end users to avail the computing power of Grid resources, depending
on economical and performance parameters.
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5 Conclusion and Future Work
In this deliverable, we presented the solutions developed in XtreemOS for achiev-
ing single sign-on and traceable delegation. The proposed single sign-on and
delegation solutions are pure operating system solutions. In classical operating
systems, some credentials are bound to users when they log in, UID/GID for in-
stance in Unix systems. All processes running of behalf of the user have these
credentials. XtreemOS guarantees the binding of user credentials to all grid re-
quests sent by the user to XtreemOS services.

The deliverable also discusses interoperability across XtreemOS and gLite
platforms. The deliverable analysed interoperability in relation to certificate man-
agement, use of security policies, and virtual organisation management. To anal-
yse interoperability, the deliverable report the experiences in developing a virtual
marketplace of computational resources from XtreemOS and gLite Grids.

Future research directions will be focusing on tackling the identified limita-
tions in the DToken approach. The interoperability case study, the virtual market-
place of resources, is a Grid application, but we are interested in adapting it for
the case of having Cloud resources.
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