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Thorsten Schütt, Florian Schintke, and Alexander Reinefeld

Zuse Institute Berlin

Abstract. We introduce SONAR, a structured overlay to store and re-
trieve objects addressed by multi-dimensional names (keys). The overlay
has the shape of a multi-dimensional torus, where each node is respon-
sible for a contiguous part of the data space. A uniform distribution of
keys on the data space is not necessary, because denser areas get assigned
more nodes. To nevertheless support logarithmic routing, SONAR main-
tains, per dimension, fingers to other nodes, that span an exponentially
increasing number of nodes. Most other overlays maintain such fingers
in the key-space instead and therefore require a uniform data distribu-
tion. SONAR, in contrast, avoids hashing and is therefore able to per-
form range queries of arbitrary shape in a logarithmic number of routing
steps—independent of the number of system- and query-dimensions.

SONAR needs just one hop for updating an entry in its routing table:
A longer finger is calculated by querying the node referred to by the next
shorter finger for its shorter finger. This doubles the number of spanned
nodes and leads to exponentially spaced fingers.

1 Introduction

The efficient handling of multi-dimensional range queries in Internet-scale dis-
tributed systems is still an open issue. Several approaches exist, but their lookup
schemes are either expensive (space-filling curves) [2] or use probabilistic ap-
proaches like consistent hashing [10] to build the overlay.

We propose a system for storing and retrieving objects with d-dimensional
keys in a peer-to-peer network. SONAR (Structured Overlay Network with
Arbitrary Range-queries) directly maps the multi-dimensional data space to a
d-dimensional torus. It supports range queries of arbitrary shape, which are use-
ful, for example, in geo-information systems where objects in a given distance of
a position are sought. SONAR can also be employed in Internet games with mil-
lions of online-players who concurrently interact in a virtual space and need quick
access to the local surroundings of their avatars. In a broader context, SONAR
can be employed as a hierarchical publish/subscribe system, where published
events are categorized by several independent attributes. The category of pub-
lished events addresses a data point in the d-dimensional space and consumers
subscribing to subareas will receive all events published in their subarea.
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The paper is organized as follows: First, we discuss related work. Then, in
Section 3, we introduce SONAR. In Section 4, we present empirical results and
in Section 5 we conclude the paper with a brief summary.

2 Related Work

Several systems [1] have been proposed that support complex queries with multi-
dimensional keys and ranges. They can be split into two groups.

a) Space Filling Curves. These systems [2,9,16] use locality preserving space-
filling curves to map multi-dimensional to one-dimensional keys. They provide
less efficient range queries than the space partitioning schemes described below,
because a single range query may cover several parts of the curve, which have
to be queried separately (Fig. 5a). Chawathe et al. [7] present performance re-
sults of a real-world application using Z-curves on top of OpenDHT. The query
performance (≈ 2 sec. for ≤ 30 nodes) is rather low due to the layered approach.

b) Space Partitioning. The schemes using space partitioning split the key-space
among the nodes. SONAR belongs to this group of systems. The proposed sys-
tems mainly differ by their routing strategies.

CAN [14] was one of the very first DHTs. It hashes the key-space onto a multi-
dimensional torus. While the topology resembles that of SONAR and MURK
(see below), CAN uses just the neighbors for routing and it does not support
range queries.

SWAM [4] employs a Voronoi-based space partitioning scheme and uses a
small-world graph overlay with routing tables of size O(1). The overlay is not
built by some regular partitioning scheme (e.g. kd-tree [5]) but uses a sample
technique to place the fingers.

Multi-attribute range queries were also addressed by Mercury [6] which needs
a large number of replicas per item to achieve logarithmic routing performance.
SWORD [12] uses super-peers and query-caching to allow multi-attribute range
queries on top of the Bamboo-DHT [15].

Ganesan et al. [9] proposed two systems for multi-dimensional range queries
in peer-to-peer systems: SCRAP and MURK. SCRAP uses the traditional ap-
proach of mapping multi-dimensional to one-dimensional data with space-filling
curves which destroys the data locality. Consequently, each single multi-dimen-
sional range-query is mapped to several one-dimensional queries. MURK is more
similar to our approach, as it divides the data space into hypercuboids with each
partition assigned to one node. In contrast to SONAR, MURK uses a heuristic
approach based on skip graphs [3] to set routing fingers.

3 System Design

We first present the overlay topology of SONAR and then discuss its routing and
lookup strategy. Thereafter we present mechanisms that make SONAR robust
under churn.
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Fig. 1. Example two-dimensional overlay with attribute domains [0, 1]

SONAR is used to store and retrieve objects. It works on a d-dimensional torus,
the key-space. Objects have a name, the key, which is a vector of d components,
the attributes of the key. Each dimension of the torus is responsible for one
attribute domain. Figure 1 illustrates a two-dimensional key-space ([0, 1]2). Ar-
bitrarily located computers, the nodes, are each responsible for a dedicated area
(hypercuboid) in the key-space of the overlay (rectangles in Fig. 1). The node-
space has the same extent as the key-space, but is completely filled with nodes.
Two nodes in the node-space are adjacent (or neighbors) when their key-space
is adjacent. The direct mapping between key-space and node-space guarantees
adjacent keys to be stored on the same or adjacent nodes, which enables efficient
range queries across node boundaries by local query propagation.

Nodes are dynamically assigned to the key-space such that each node serves
roughly the same number of objects. Load-balancing is done by changing the
responsibility of nodes instead of moving around objects in the key-space. That
becomes necessary when the number of objects or nodes in the system changes
(Sect. 3.4).

3.1 Overlay Topology

As illustrated in Figure 1, the two-dimensional key-space is covered by rectangles,
each of them containing about the same number of objects. Because the keys
are generally not uniformly distributed, the rectangles have different sizes and
thus may have more than one neighbor per direction. The neighbors are stored
in neighbor lists, one per dimension.

The overlay described so far resembles that of CAN [14] except for the hashing
in CAN, which prevents efficient range queries. Consequently, SONAR would also
need O( d

√
N) network hops if it would just use the neighbors for routing. In the

following, we introduce routing tables to achieve logarithmic routing performance.

3.2 Routing

For routing, SONAR uses separate routing tables, one per dimension. Each rout-
ing table contains fingers spanning an exponentially increasing number of nodes
(Fig. 2). With a total of log N routing fingers, the average number of hops is
reduced to O(log N) [17].
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Fig. 2. Routing table for the two-dimensional case

To calculate its ith finger in the routing table, a node looks at its (i − 1)th

finger and asks the remote node listed there for the (i−1)th finger. At the lowest
level, the fingers point to the successor.

finger i =
{

successor : i = 0
finger i−1.getFinger(i − 1 ) : i %= 0

This update process works in a running system, but also during startup.
Initially, all fingers are set to unknown except for the finger to the successor.
Filling the second entry will always succeed, because the successor knows its
successor. Filling further entries may fail (result unknown), because the remote
node may not have determined the corresponding entry yet. But with subsequent
periodic updates, eventually all nodes will get their entries filled. The resulting
structure is similar to skip lists [13], but the behavior is more deterministic.

Successor Used for Routing. A node may have more than one neighbor per
direction. We define the node adjacent to the middle of the respective side to be
the successor. Successors are marked by small ticks in Figure 2.

Due to the different box sizes and the calculation of longer fingers from shorter
ones, fingers are not necessarily straight in one direction. Slight deviations in y-
direction might occur when following the fingers of the x-direction (and vice
versa), as shown in Figure 2. Our empirical results indicate, however, that this
does not affect the logarithmic routing performance (Sect. 4).

Routing Table Size. Each node holds approximately log N fingers in its routing
tables. However, not knowing the total number of nodes N , how many fingers
should a node put into each of its d routing table so that the total is log N?
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// calculates the entries of a routing table
void updateRoutingTable(int dim) {

int i = 1;
bool done = false;

rt[dim][0] = this.Successor[dim];

while (!done) {
Node candidate = rt[dim][i - 1].getFinger(dim, i - 1);
if (IsBetween(dim, rt[dim][i - 1].Key, candidate.Key, this.Key)){

rt[dim][i] = candidate;
i++;

} else
done = true;

}
}

// checks whether the resp coordinate of pos lies between start and end
bool IsBetween(Dim dim, Key start, Key pos, Key end);

Fig. 3. Finger calculation for dimension dim

Mercury [6] predicts the system size N by estimating the key density. SONAR
uses a simpler, deterministic solution with less overhead.

For each dimension dim , SONAR’s finger update algorithm (Fig. 3) inserts an
additional finger finger i as long as its position is between that of the last routing
table entry finger i−1 and that of the node itself. Otherwise the new finger circles
around the ring and is not inserted.

Our results in Section 4 confirm that each node holds indeed log N fingers.
The construction process guarantees—in contrast to Chord [18]—that no two
fingers point to the same node. Since the fingers in the routing tables span an
exponentially increasing number of nodes, the routing table of each dimension
has a total of &log D' entries on the average, where D is the number of nodes in
this direction on the torus.

Cost of a Finger Update. Our periodically running finger update algorithm needs
just one network hop to determine an entry in the routing table. Chord in con-
trast needs O(log n) for the same operation, because it performs a DHT lookup
to calculate a finger.

3.3 Lookup and Range Queries

As in other DHTs, SONAR uses greedy routing. In each node the finger that
maximally reduces the Euclidean distance to the target in the key-space is fol-
lowed, independently of the dimension (see Fig. 4).

SONAR supports range queries with multiple attributes. In its most basic
form a range query is defined by d intervals for the d attribute domains. The
range query finds all keys whose attributes match the respective intervals and
returns the corresponding objects. Because of their shape, such range queries
are called d-dimensional rectangular range queries.

In practice, users sometimes need to define circles, polygons, or polyhedra in
their queries. Figure 5 illustrates a two-dimensional circular range query defined
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// find the responsible node for a given key
Node find(Point target) {

Node nextHop = findNextHop(target);
if (nextHop == this)

return this;
else

return nextHop.Find(target);
}

double getDistance(Node a, Point b);

Node findNextHop(Point target) {
Node candidate = this;
double distance = getDistance(this, target);

if (distance == 0.0)
// found target
return this;

for (int d = 0; d < dimensions; d++) {
for (int i = 0; i < rt[d].Size; i++) {

double dist = getDistance(rt[d][i], target);
if (dist < distance) {
// new candidate
candidate = rt[d][i];
distance = dist;

}
}

}
// will never happen:
Assert(candidate != this);
return candidate;

}

Fig. 4. Lookup for a target

by a center and a radius. Here, we assume a person located in the governmental
district of Berlin searching for a hotel in ‘walking distance’ (circle around the
person). The query is first routed to the node responsible for the center of the
circle and then forwarded to all neighbors that partially cover the circle (Fig. 5b).
The query is checked against the local data and the results are returned to the
requesting node. Figure 6 shows the pseudocode of this algorithm. Note that
redundant messages are eliminated. op is an additional check for objects in the
queried area—in this case for type hotel.

SONAR performs a range query with a single lookup. When the target node
does not hold the complete key range, the query is locally forwarded. Systems
with space-filling curves, in contrast, usually require more than one lookup for
a single range query because they map connected areas to multiple independent
line segments, see Figure 5a.

3.4 Topology Maintenance to Handle Churn

Node Join. When a node joins the system, the key-space of a participating
node has to be split and the key responsibilities subdivided. To achieve this, two
things must be done (we first describe random splitting and then include load
balancing):
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Z-curve (8 line segments): 8 ·log2(N) Neighborhood broadcast: log2(N)+6

Fig. 5. Circular range query

// perform a range query
void queryRange(Range r, Operation op) {
Node center = Find(r.Center);
center.doRangeQuery(r, op, newId());

}

void doRangeQuery(Range r, Operation op, Id id) {
// avoid redundant executions
if (pastQueries.Contains(id))

return;
pastQueries.add(id);

foreach (Node neighbor in this.Neighbors)
if (r ∩ neighbor.Range != ∅)

neighbor.doRangeQuery(r \ this.Range, op, id);

// execute operation locally
op(this, r);

}

Fig. 6. Range query algorithm

1. Select a random target node: A random position in the key-space is routed
to and a random walk is started from there. The final target node of this is
the candidate to be split. The random walk ensures that nodes responsible
for larger areas of the key-space are not preferred over smaller ones.

2. Split the key-space and transfer one part to the new node: Splits are parallel
to one of the coordinate system axes. The selection of the axis to be split
should not strictly favor one dimension over the others because the number
of nodes to be contacted for a range query could become disproportionately
high, when a large interval for the favored dimension is specified in the query.
Also, node leaves could become more expensive.

(a) (b)
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Node Leave. Handling a leaving node is more difficult, because it is not always
obvious which node can fill the area of the leaving node. For example, in Figure 1,
the area of node f cannot be merged with any of its neighbors, because this would
result in a non-rectangular node-space.

Therefore the node-space is constructed in such a way that the splitting plane
forms a kd-tree [5]. KD-trees are used only for topology maintenance, similar as
in MURK [9], but not as index structures like in database systems. The space of
a leaving node can be taken over by a neighboring node which is also a sibling
in the kd-tree. By keeping the tree balanced the probability of having a sibling
as a neighbor increases. Each node must remember its position in the kd-tree, a
bit-string describing the path from the root of the tree to the node itself.

If no neighboring nodes are siblings in the kd-tree, another node must be
found to fill the gap. Either a neighboring node additionally takes over the re-
sponsibility of the separate area until a free node can be found, or two completely
independent nodes that are siblings in the kd-tree have to be found to merge
them and thus free a node that takes over the free area. The former concept,
called virtual nodes, is also used for load-balancing in other systems.

Load Balancing. Load-balancing can be implemented by either adjusting the
boundaries of the responsibilities locally or freeing nodes in underloaded areas
and moving them to overloaded areas. The former has similar issues as a node
leave—the boundaries are interlocked with limited room for adjustments. The
latter was shown to be converging [11] with predictable performance.

The balancing can be based on different metrics for load, like object or query
load or a combination of both. To avoid thrashing effects a threshold for per-
forming a load-balancing round must be introduced.

4 Empirical Results

For testing the performance of SONAR we used a traveling salesman data set
with 1,904,711 cities1. The cities’ geographical locations follow a Zipf distribu-
tion [19] which is also common in other scenarios.

We assigned the responsibility of nodes by recursively splitting the key-space
at the longer side, so that each part gets half of the cities until enough rectangles
are created. Figure 7 shows a sample splitting for 256 nodes.

The coordinates were mapped onto a doughnut-shaped torus rather than a
globe, because in a globe all vertical rings meet at the poles. This would not only
cause a routing bottleneck at the poles but would also result in different ring
directions for the western and eastern hemisphere (southwards vs. northwards).

Figure 8 shows the results for various all-to-all searches in networks of differ-
ent sizes. The routing performance, depicted by the ‘+’ ticks, almost perfectly
matches the expected 0.5 log2 N hops. Only in the larger networks the expected
value slightly deviates.

1 http://www.tsp.gatech.edu/world
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Fig. 7. 1,904,711 cities split evenly into 256 rectangular nodes
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Fig. 8. SONAR results for increasing system sizes (2-dimensional)

We also checked whether the number of fingers in the routing tables, which are
calculated without global information (Fig. 4), meets our expectations. The ‘!’
ticks give the routing table sizes in horizontal direction, and the ‘∗’ ticks represent
the sizes in vertical direction. As expected, both graphs have the same slope of
0.5 log2 N : One lies consistently above, the other below. This is attributed to the
different domain sizes of the coordinate system (360 versus 180 degrees) and to
the uneven number of splitting planes.

Figure 9 gives further insight into the characteristics of SONAR’s routing
tables. It shows—again for various network sizes—the deviation of the table
sizes from their expected size log2 N (denoted by ‘0’). As can be seen, the same
pattern applies for all network sizes: About 50% of the tables contain one extra
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Fig. 9. Routing table size deviation from the expected value

entry, about 25% meet the expected size of log2 N , while there is a decreasing
number of tables with fewer entries. These deviations are caused by the uneven
key distribution and by SONAR’s finger update algorithm which has a tendency
to insert in some cases an extra finger that is more than halfway around the ring
(but still ‘left’ of the own node).

5 Conclusion

SONAR efficiently supports range-queries on multi-dimensional data in struc-
tured overlay networks. It needs O(log N) routing steps for processing range-
queries of arbitrary shapes and an arbitrary number of attribute domains. The
finger calculation needs just one hop for updating an entry in the routing table.

We presented empirical results from a Zipf distributed data set with approxi-
mately two million keys. The results confirm that SONAR does its routing with a
logarithmic number of hops—even in skewed data distributions. Additional tests
with other practical and uniform distributions (not shown here) gave the same
logarithmic routing performance. Furthermore, we observed that the sizes of the
distributed routing tables are always O(log N) although they are autonomously
maintained by the nodes with local information only.
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References

1. Aberer, K., Onana Alima, L., Ghodsi, A., Girdzijauskas, S., Haridi, S., Hauswirth,
M.: The essence of P2P: A reference architecture for overlay networks. In: P2P
2005 (2005)



A Structured Overlay for Multi-dimensional Range Queries 513

2. Andrzejak, A., Xu, Z.: Scalable, efficient range queries for Grid information ser-
vices. In: P2P 2002 (2002)

3. Aspnes, J., Shah, G.: Skip graphs. In: SODA (January 2003)
4. Banaei-Kashani, F., Shahabi, C.: SWAM: A family of access methods for similarity-

search in peer-to-peer data networks. In: CIKM (November 2004)
5. Bentley, J.: Multidimensional binary search trees used for associative searching.

Communications of the ACM 18(9) (1975)
6. Bharambe, A., Agrawal, M., Seshan, S.: Mercury: Supporting scalable multi-

attribute range queries. In: ACM SIGCOMM 2004 (August 2004)
7. Chawathe, Y., Ramabhadran, S., Ratnasamy, S., LaMarca, A., Shenker, S., Heller-

stein, J.: A Case Study in building layered DHT applications. In: SIGCOMM’05
(August 2005)

8. Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Sur-
veys, 30(2) (1998)

9. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: Multi-
dimensional queries in P2P systems. In: WebDB2004 (2004)

10. Karger, D., Lehman, E., Leighton, T., Panigrah, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the World Wide Web. In: ACM Sympos. Theory of Comp. (May 1997)

11. Karger, D., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer
systems. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279,
Springer, Heidelberg (2005)

12. Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A.: Design and implementa-
tion tradeoffs for wide-area resource discovery. In: 14th IEEE Symposium on High
Performance Distributed Computing (HPDC-14) (July 2005)

13. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Communications
of the ACM (June 1990)

14. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: ACM SIGCOMM 2001 (August 2001)

15. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:
Proceedings of the USENIX Annual Technical Conference (June 2004)

16. Schmidt, C., Parashar, M.: Enabling flexible queries with guarantees in P2P sys-
tems. IEEE Internet Computing, 19–26 (May/June 2004)
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