
The Query-Vector Document Model

Diego Puppin, Fabrizio Silvestri
ISTI-CNR, HPC Laboratory
Via Moruzzi 1, Pisa, Italy

{diego.puppin, fabrizio.silvestri}@isti.cnr.it

Categories & Subject Descriptors: H.3.1 Content Anal-
ysis and Indexing
General Terms: Algorithms
Keywords: Document Partitioning, Collection Selection,
Document Model

Introduction. Modern Web IR systems have to manage
collections of billions of documents. The indexes used to
represent them are very large data structures, the form of
which can have a big impact on the quality and the speed
of IR algorithms. Traditionally, two main ways are used
to model the documents available: the bag-of-words model,
and the vector-space model.

In the query-vector document model, documents are mod-
eled with the list of queries they match, along with the rank
they get for each. The query-vector representation of a doc-
ument is built out of a query-log. A reference search engine
is used in the building phase: for every query in the training
set, the system stores the first 100 results along with their
rank. This creates a matrix, with documents on columns
and queries on rows, where each entry is the rank of a doc-
ument for a given query.

To be more precise, let Q be a query log containing queries
q1, q2, . . . , qm. Let di1, di2, . . . , dini

be the list of documents
returned as results to query qi. Furthermore, let rij be the
rank that document dj gets as result of query qi (0 if the
document is not a match).

A document dj is represented as an m-dimensional vector
dj = [rij ]

T , where rij ∈ [0, 1] is the normalizated value of
rij : rij = rij/

P
ij rij .

The rij values form a contingency matrix R (proof in [4]),
where we can perform the co-clustering algorithm by Dhillon
et al. [3]. This approach creates, simultaneously, clusters of
rows (queries) and columns (documents) out of an initial
matrix, with the goal of minimizing the loss of information.
The result of co-clustering is a matrix bP defined as:

bP (qca, dcb) =
X

i∈qcb

X

j∈dca

rij

Copyright is held by the author/owner(s).
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
ACM 1-59593-433-2/06/0011.

In other words, each entry bP (qca, dcb) sums the contribu-
tions of rij for the queries in the query cluster a and the
documents in document cluster b. We call this matrix sim-
ply PCAP. The values of PCAP are important because they
measure the relevance of a document cluster to a given query
cluster.

Document Clustering and Collection Selection. We
use our model to perform document clustering. This is
used as a central part of a distributed, document-partitioned
information retrieval system. Instead of partitioning the
documents randomly and broadcasting queries to all sub-
collections, we do a guided partioning, and we use a collec-
tion selection strategy to query only a few sub-collections.

We compared different approaches to partitioning:
(1) random: a random allocation;
(2) shingles: documents’ signature were computed using
shingling[1], on which we used the standard k-means;
(3) URL-sorting: it is a very simple heuristics, which as-
sign documents block-wise, after sorting them by their URL;
(4) k-means: k-means on the query-vector representation;
(5) co-clustering: we used the algorithm from [3] to com-
pute documents and query clusters.

We used the CORI [2] technique to perform collection
selection in all cases. In the last case we could also use
a novel technique based on the results of co-clustering, as
follows.

The queries belonging to each query cluster are joined to-
gether into query dictionary files. Each dictionary file stores
the text of each query belonging to a cluster, as a single text
file. When a new query q is submitted to our IR system, we
use the TF.IDF metric to find which clusters are the best
matches: each dictionary file is considered as a document,
which is indexed with the usual TF.IDF technique. This
way, each query cluster qci receives a score relative to the
query q, say rq(qci).

This is used to weight the contribution of PCAP bP (i, j)
for the document cluster dcj , as follows:

rq(dcj) =
X

i

rq(qci) × bP (i, j)

Experimental Results. We performed all our test using
the WBR99 collection. WBR99 consists of 5,939,061 doc-
uments documents. We could use also a query log for the
period January through October 2003.

Following previous example in literature, we measure the



coverage of the top results from a reference search engine1

when using only a subset of the available collection: when
we measure the coverage at 5, we see how many of the first
top 5 results are present in the first chosen sub-collection,
the first 2 collections and so on.

The query-vector representation is built using, as a train-
ing set, the first three weeks of our query log, which comprise
about 190,000 unique queries. This means that, at the log-
ical level, documents are represented by vectors in R

190,000 .
Techniques no. 4 and 5 divided the available documents

into 16 clusters. The 17th cluster is the overflow cluster,
composed of the documents that are never recalled by queries
in the training set, represented by empty query-vectors. The
overflow cluster is always selected as the last one. In the
other cases, the documents are distributed evenly over 17
clusters.

In all cases, we assigned each document cluster to a server
of our distributed IR system, and then we used the standard
CORI [2] technique to perform collection selection. CORI
collects some statistics about the distribution of terms in
the collections, and then weights the collections accordingly.
With co-clustering, we also used PCAP. With PCAP, the
overflow cluster is always queried as the last one. We used
the fourth week from the query-log as our test set: the
queries from the fourth week were submitted to the dis-
tributed search engine, and we measured the coverage we
get by returning only documents from 1, 2, 4, 8, 16 and all
clusters.

The quality of coverage increases dramatically when we
shift from random allocation, k-means on shingles and URL-
sorting, to techniques which use the query-vector represen-
tation. The simple k-means on the query-vectors is able to
reach about 30% coverage (1.47 out of 5) when using only
one sub-collection out of 17. Co-clustering improves this fig-
ure to 1.57. When we use our collection selection strategy
based on PCAP, we are able to cover 34% of the top five
documents using only one sub-collection.

These figures are confirmed when we measure the coverage
of top-10 and top-20 results, and we shift to later queries
(not shown). In general, our proposed approach is able to
dramatically reduce the number of collections we need to
query to reach a chosen coverage.

Footprint of the Representation. Every collection selec-
tion strategy needs a representation of the collections, which
is used to perform the selection. Let’s call dc the number of
document collections, t the number of terms, qc the number
of query clusters and t′ the number of terms in the queries.

The CORI representation is dominated by a datum called
dfi,k, which is the number of documents in collection i con-
taining term k. Its size it is O(dc × t). Overall, the CORI
representation is composed of about 48.6 million entries be-
fore compression.

On the other side, the PCAP representation is composed
of the PCAP matrix, with the computed bp, O(dc × qc), and
the index for the query clusters, which can be seen as ni,k,
the number of occurences of term k in the query cluster i,
for each term occurring in the queries, O(qc × t′). These
two terms sum up to about 9.4 million entries, significantly
smaller (more than 5x) than the CORI representation.

Empty Query-vectors. At the end of the training period,

1Zettair, available at http://www.seg.rmit.edu.au/zettair/.

random allocation (CORI) 0.3
clustering with k-means on shingles (CORI) 0.56
URL sorting (CORI) 0.94

clustering with k-means on query-vectors (CORI) 1.47
co-clustering (CORI) 1.57
co-clustering (PCAP) 1.74

Figure 1: Summary of results. Coverage at 5 on all
clusters (top) and first cluster only (bottom).

we observed that a large number of documents, around 52%
of them, are not returned among the first 100 top-ranked
results of any query. We also verified that they contribute
only to 2%-3% coverage of the results in the test query set.

These documents can be pruned and stored in another
server, used only when the user browses for low-relevance
documents, without a significant loss in coverage.

Conclusions. In this contribution, we discussed the query-
vector document representation for IR systems. The query-
vector model is a compact representation for documents,
based on the queries performed by users. It allows for a very
effective document clustering, which boost the performance
of standard collection selection techniques (CORI).

Moreover, the co-clustering algorithm we use on query-
vectors induces a novel selection strategy that outperforms
CORI by about 10% and has a smaller footprint.

We could also perform a very effective document pruning,
by removing about 52% documents with a limited loss of 3%
coverage.

Our results were confirmed at different coverage level (5,
10, 20) and also when we used later queries from the query-
log: the system appears to be robust to topic-shift.

References.
[1] Andrei Z. Broder, Steven C. Glassman et al. Syntactic

clustering of the web. In WWW 1997, pages 1157–1166.
[2] J.P. Callan, Z. Lu, and W.B. Croft. Searching Distributed

Collections with Inference Networks. In SIGIR 1995, pages
21–28.

[3] I. S. Dhillon, S. Mallela, and D. S. Modha.
Information-theoretic co-clustering. In KDD-2003, pages 89–98.

[4] D. Puppin, F. Silvestri, and D. Laforenza. Query-driven
document partitioning and collection selection. In Infoscale
2006.


