
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Automatic Exchange of Scheduling Methods for Clusters
XtreemOS Technical Report # 2

Marko Novaka

Report Registration Date: July 8, 2008

Version 0.1 / Last edited by Marko Novak / July 8, 2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
PP Restricted to other programme participants (including the Commission Services)

√

RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

amarko.novak@xlab.si



Revision history:
Version Date Authors Institution Section affected, comments

0.1 07/07/2008 Marko Novak XLAB Initial document



Abstract

Due to still increasing demand for computing power, the efficient uti-
lization of computational clusters is becoming more and more important.
During the process of utilizing such clusters, different sometimes conflict-
ing objectives like the maximization of the overall system utilization or
the minimization of the energy consumption have to be incorporated into
the scheduling decision process. Therefore, the ability to dynamically
adapt to changing demands becomes a highly desirable feature of clus-
ter schedulers and job management systems. In this paper, we describe
a cluster scheduling system that can automatically adapt itself to the
changing system states within the cluster. Based on the different resource
measurements, it can update different parameters of the scheduling policy
that is currently in place or dynamically exchange the whole scheduling
policy. Note that the new scheduling policy does not need to be defined
at the system start. That is, the administrator can define new strate-
gies during the runtime that are dynamically integrated. To this end,
we present the main components which form our scheduling system: the
Pluggable Probes and Scheduling Policies Framework and the Scheduling
Configuration Changer. Furthermore, we discuss different advantages and
disadvantages of our approach.

1 Introduction

The demand for compute power in science as well as in industry is permanently
increasing. This is caused due to more complex applications and the introduc-
tion of new fields where computational resources are required. Furthermore,
the ability to dynamically adapt to changing demands becomes more and more
important especially in the business context, see e.g. Franke et. al [8]. These
problems are addressed at various level, e.g. the application level by introducing
Service Oriented Architectures or on the resource management level in larger
data centers. The modifications and extensions at the different levels provide
certain advantages and restrictions. Furthermore, the different levels are depen-
dent on each other.

In industry as well as in scientific data centers, it becomes increasingly im-
portant to differentiate between different users, see e.g. Franke et. al [10]. That
is, some customers are more important and valuable than others as the business
relationship and correspondingly the prices differ. These different relationships
are encoded in specific Service Level Agreements (SLA) where the usage, the
usage constraints, and the data center services and costs are specified [11]. The
management of the data center must incorporate all these SLAs as violated
SLAs normally lead to penalties. In parallel, the management tries to minimize
the needed resources. This for example affects the necessary processing nodes,
the required storage, and the energy which is consumed for the processing.

In the past, data centers mainly used a central job pool where all submitted
but not yet started jobs where stored. Then, a job scheduler distributes the
different computational jobs onto the different nodes. In the majority of these
cases, the jobs run until completion on the specified nodes. For such scenar-
ios including individual computational clusters and computational grids, many
different scheduling strategies have been developed [6, 5]. However, all these
strategies did not pay attention to the different provider - customer business

1



relationship. Furthermore, the scheduling strategies were only used for the ini-
tial allocation. That is, the dynamic migration of computational jobs was not
possible using these strategies.

In this paper, we address how the cluster operating System Kerrighed and
the corresponding scheduling mechanisms overcomes most of the mentioned
problems. Kerrighed is a modification of the Linux operating system and aims
to manage a whole cluster as one large unit. Thus, the different user have the
impression of using a single machine only. However, Kerrighed faces the same
problem as more traditional cluster management systems as also here different
customers have different priorities.

Here, we describe how Kerrighed has been extended to dynamically exchange
scheduling strategies. Furthermore, these scheduling strategies are not only used
for the initial allocation of resources to jobs but also for the dynamic migration
of jobs within the whole cluster. Using these mechanisms, a dynamic adaptation
to changing computational demand can be realized. Furthermore, this scheduler
exchange mechanism can be used to prioritize different goals at different times.
For example, it might make sense to migrate many interactive jobs that are idle
during the night to a small subset of machines and switch off all other machines.
This would lead to larger energy savings that directly affect the profit of the
data center.

Additionally, the described scheduling strategy can adapt itself to the load
of the cluster. That is, the system can automatically extend the probing period
in order to reduce the overhead due to the measurements. When the load of
the system is back to the normal state, the probing periods are adapted again.
Thus, all decisions about scheduling strategies and about probing can be based
on system parameters like the overall load, similar to the mechanisms described
by Franke et. al [7, 9].

The main advantage of using Kerrighed as the base for the implementation
is the reduction of the necessary overhead. All mechanisms to exchange the
scheduling strategies are implemented in kernel modules. Thus, all kernel data
can be accessed directly without additional overhead compared to an additional
call in the normal user space.

The remainder of the paper is organized as follows. Section 2 presents job
scheduling in computational clusters and dynamic scheduling of the Kerrighed
operating system. Section 3 describes our cluster scheduling system, which
enables the automatic exchange of scheduling methods in clusters. Section 4
discusses some of the advantages as well as some disadvantages of our approach.
Section 5 concludes the paper.

2 Background

This section provides additional information on the job scheduling in compu-
tational clusters. Furthermore, the current process scheduling within the Ker-
righed operating system is introduced in detail.

2.1 Job-Scheduling in Clusters

Scheduling in computational clusters is well established and data centers can
use various software products for this task, e.g. Condor [14], PBSPro [12], and

2



Torque [18]. All these tools mainly focus on the initial allocation of jobs to
resources. This resource assignment is usually performed just before the job
start. The computational jobs from the different data center users are released
over time. Furthermore, the jobs are normally rigid. That is the number of
processors is pre-defined by the user at release date and does not vary over
time. All jobs run to completion that is no preemption [16, 15] is used. Only in
the case that a user specified maximum runtime is exceeded, the system stops
the job execution in order to prevent the system from running faulty programs.

At the majority of installations, the scheduling system is a variation of
First-Come-First-Serve (FCFS) [19], or EASY backfilling [13]. These schedul-
ing strategies are static and do not vary over time. Newer system management
approaches incorporate many different scheduling objectives during the deci-
sion process, see e.g. Franke et. al [10]. This leads to a dynamic exchange of
scheduling algorithms depending on the preferences of the data center provider
and the different systems states. To this end, a system state classification is
learned offline and later applied online. This is a restriction as the later read-
justment of the system classification or the set of possible scheduling algorithms
is in the current implementations only possible by stopping the whole system
for a short period of time. Within this work, we present a method to overcome
these problems.

2.2 Process Scheduling in Kerrighed

Kerrighed [3] is a community project that was initiated as a research project
to provide simple operating systems for clusters [17]. Its development is now
supported by a dedicated company called Kerlabs [2].

Process scheduling in Kerrighed differs from traditional approaches on clus-
ters thanks to its Single System Image (SSI) property. The SSI property is
the ability of a system to hide the heterogeneous and distributed nature of the
available resources and present them to users and applications as a single unified
computing resource. In other words, an SSI cluster of 10 uniprocessor comput-
ers is seen by the user as a single 10-processor computer. Kerrighed is fully
decentralized (there is no front-end node) and is implemented as an extension
of the Linux kernel that adds SSI features like:

• Cluster-wide process management: processes get cluster-wide PID’s,
the fork() system call can create processes on remote nodes, signals are
sent to processes whatever their location, etc.;

• Cluster-wide shared memory: a parallel application using the shared
memory communication paradigm can be transparently distributed over
the cluster nodes.

In particular, thanks to the SSI property, Kerrighed can transparently create
processes on remote nodes (remote fork) when a program calls the fork() system
call, and transparently migrate processes during their execution.

For cluster-wide process scheduling, Kerrighed provides a customizable global
process scheduler[20]. This service is integrated in a framework allowing admin-
istrators to design customer specific scheduling policies using the low-level pro-
cess management features like remote fork and migration. The work presented
in this paper is not based on the framework presented in [20], but on a new

3



implementation featuring improved flexibility and functionalities which are de-
scribed in Section 3.2. The main concepts driving both versions of Kerrighed’s
global scheduler framework are:

• Separate global scheduling from local scheduling: global scheduling
policies only take care of choosing which node executes which process,
and let the Linux scheduler of each node schedule processes on the node’s
CPUs.

• Instantiate global schedulers on all nodes: global schedulers are fully
distributed. This property is required to be able to dynamically add or
remove nodes to the cluster without having to stop it.

• Build schedulers out of building blocks: to help the design of cus-
tom schedulers, the framework allows to connect scheduling components
together and provides an API to let components publish/request data
and notify events. Scheduler designers can then reuse these components
for different schedulers.

• Implement at kernel-level: for performance reasons all the framework
and all scheduling building blocks are implemented at kernel-level. The
main performance issues are the overhead to monitor system properties
frequently (doing this in userspace adds the overhead of at least one system
call at each read, and many process-related states are not exposed to
userspace), and efficient parsing of processes, for instance find a good
candidate to migrate in order to balance the CPU load.

• Separate data/event collecting from process placement/migration
strategies: the main types of components defined by the framework are
probes and policies (called global scheduling managers [20]). Probes col-
lect data or notify events from kernel internals, and policies implement
the process placement/migration strategies using information provided by
the probes.

• Allow to modify schedulers at run-time: scheduling components can
be loaded and linked together at run-time, and unlinked and unloaded
at run-time as well. This allows administrators to change of scheduler
without stopping the cluster, for instance to upgrade the policy, or to
adapt to a workload change.

Although this framework provides administrators with a large flexibility in
defining scheduling policies adapted to their use case, this framework does not
solve all the issues exposed in Section 2.1. In particular, Kerrighed does not
relieve administrators from having to change scheduling policies each time the
workload characteristics change. Using Kerrighed’s ability to change global
scheduling policies at run-time, we present how this can be solved in Section 3.

3 Our Approach

Our main goal was to design a scheduling system that would be able to adapt
itself automatically to various state changes in the cluster (e.g. increased load

4



in the cluster, load imbalance among the nodes, memory shortage on partic-
ular nodes, increased network traffic, etc.). No human intervention should be
needed. This would significantly improve the adaptability of the clusters and
thus increase its utilization.

For the implementation, we haven chosen the Kerrighed system, however our
approach can be used on every operating system that enables process migration
among various cluster nodes (we need a process migration in order to perform
dynamic scheduling of the jobs that are already executing).

Figure 1: Adaptable scheduler architecture.

In order to separate the logic that triggers the changing of scheduling al-
gorithms from the infrastructure that performs the actual changing, we have
decided to separate our system into two modules (see Figure 1):

• Pluggable Probes and Scheduling Policies framework

• Scheduling Configuration Changer

The modularity of the framework is a key feature to simplify the implemen-
tation of the probes and the scheduling policies, as well as all the necessary logic
for triggering the changes.

3.1 Terminology

Before we start describing our approach regarding the dynamic exchange of
scheduling methods, we define the basic notion which are used throughout the
whole description.

Probe: an entity for measuring different resource properties (e.g. CPU load,
CPU speed, total memory, free memory). A probe collects information (data or
events) and makes them available to other scheduler components. Scheduler de-
signers can implement these probes as separate Linux kernel modules and insert
them dynamically into the kernel. Probes may collect data already computed by
the kernel (CPU average load for instance) or compute other data (alternative
notion of CPU load, like the one of Mosix [4] for instance), thus extending the
set of resource properties that are being measured.

Scheduling policy: an implementation of a job scheduling algorithm. In
Kerrighed, a scheduling policy is in charge of selecting a proper node for a partic-
ular process. Scheduling policies base their decisions on data/events collected

5



by probes. An example of a scheduling policy is a migration-based, sender-
initiated load balancing policy. This policy takes resource properties from one
or more probes as input and when it detects that the local load is higher than
the loads of remote nodes, it tries to migrate processes to balance the load.

Filter: an intermediate entity taking data/events as input and producing
a filtered output. Filters are useful to share probes between several scheduling
policies and adapt the probes’ outputs to each scheduling policy, or to implement
modular features of a scheduler. Filters can be chained to implement complex
filters out of simple ones. Filters implement for instance different caching poli-
cies of data collected from remote nodes, or block events unless the value of the
event source exceeds a threshold.

Scheduling configuration: a set of probes, scheduling policies and filters
that is loaded on a cluster node at a particular moment. Only one scheduling
configuration can be selected at a given moment. Different scheduling config-
urations correspond to different cluster states (the cluster states are defined
using various resource measurements). For example, we can define two separate
scheduling configurations: one is selected when the cluster load is low (e.g. the
average CPU usage is smaller than 50%) and the other is selected when the load
is high (e.g. the average CPU usage is greater than 50%).

Selector: an entity which is in charge of selecting user-defined scheduling
configuration based on different resource properties. The selector implements
all the necessary logic for deciding which scheduling configuration should be
chosen under given conditions. In order to make selectors as configurable as
possible, they have to be implemented as a separate plug-ins and added to the
scheduling system.

3.2 Pluggable Probes and Scheduling Policies Framework
(PlugProPol)

PlugProPol is an infrastructure which enables scheduler designers to write their
own probes and scheduling policies and add them to the system at runtime
(without the need to restart the cluster). This infrastructure is the basis for the
Scheduler Configuration Changer presented in Section 3.3. First we describe
the design goals of the PlugProPol framework, and second we give an overview
of its design and implementation.

3.2.1 Features

The main goal of Kerrighed’s scheduler framework is to provide administrators
with highly configurable scheduler configurations. For instance, if the adminis-
trator has to setup a new scheduler based on disk usage, he only implements a
proper probe and plugs it to the framework runtime. After that, he can start
collecting the data about the disk usage immediately. All these operations can
be done without recompiling the operating system kernel, and without even re-
booting the cluster. The administrator should also be able to change the set of
locally measured resources very easily and thus adapt it to his current needs,
local system load, etc.

This goal induces three main modularity needs:

• Allow administrators to build schedulers with building blocks.

6



• Separate a scheduler architecture into basic functionalities that can be
implemented by building blocks. The basic functionalities are probes,
scheduling policies, and filters.

• Allow administrators to dynamically configure, connect, and disconnect
building blocks at run time.

For instance, an administrator should be able to build a process migration-based
CPU load balancer out of two building blocks: a CPU probe measuring periodi-
cally the CPU loads of the nodes, and a generic migration-based load balancing
scheduling policy. To do this, the administrator uses the framework to config-
ure both components, and simply connect them together. The administrator is
then able, at runtime, to refine the scheduler, for instance introducing a filter
relaying newly computed local load to the scheduling policy only if it exceeds
a threshold above which the performance of local processes may decrease, or
changing the period of CPU load computation to decrease the operating system
overhead. Figure 2 shows an example of such a refined CPU load balancer,
where the scheduling policy selects candidate processes according to the load
they induce. The scheduler was added a threshold filter as just described in
order to decrease the overhead of process scanning and comparisons between
the local load and remote loads. Moreover, the scheduler was added a caching
filter that decreases the overhead of retrieving the loads of remote nodes. Those
last two building blocks could be added at anytime during the execution, and
can be reconfigured, exchanged, or removed at anytime.

Figure 2: Modularity of schedulers with probes, scheduling policies, and filters.

To the three main needs just mentioned, for performance reasons, we added
the constraint to implement the framework and all the scheduler components at
kernel-level, the scheduler components being implemented as loadable modules
for the Kerrighed kernel. As we already mentioned in Section 2.2, the main
performance issues are the overhead to frequently monitor system properties
from userspace when they are computed as kernel-level state, provided that
an interface exists, and efficient parsing of processes, for instance find a good
candidate to migrate in order to balance the CPU load.

7



3.2.2 Design and implementation

The PlugProPol scheduler framework is very similar to the former Kerrighed
scheduler framework [21]. Besides the implementation details, the main differ-
ences are the following:

• the scheduler configuration is based on the configfs virtual file system,
instead of XML files [21];

• PlugProPol introduces filters, which are a generalization of local analyz-
ers [21];

• PlugProPol introduces process sets (not described in this paper though),
which allow administrators to define several schedulers and let each of
them act only on configured sets of processes.

The configfs [1] virtual file system provides a file-system based user interface
to create, configure, and destroy kernel objects. The root of the configfs file
system provides one directory for each registered subsystem. Each of these
directories and sub-directories represent kernel objects. All file entries in a
directory represent object attributes. To create an object, the user simply calls
the mkdir system call, for instance using the mkdir shell command. Similarly,
to get or set the value of an object’s attribute, the user simply calls the read
and write system calls, for instance using the cat and echo shell commands.
Kernel objects can be created under other kernel objects as sub-directories, or
linked together through symbolic links from one object directory to a file entry
in another object’s directory. Finally, kernel objects are destroyed by simply
removing their representing directories.

From this properties of configfs, PlugProPol implements all its needed dy-
namic configurability interfaces using the configfs interface and the automatic
module loading feature of the Linux kernel. Components are represented as
kernel objects (directories in configfs), and are linked either by creating a com-
ponent under the directory of another one (see the description of filters below),
or by drawing a symbolic link from one component directory to an entry in an-
other component directory (see the description of probes below). The name of
the kernel module implementing a component is derived from the directory name
of the component when it is created, which enables the PlugProPol framework
to automatically load the needed kernel modules on demand.

The PlugProPol implementation in Kerrighed also provides an SSI view of
the scheduler configuration: object creation, destruction, or attribute settings
are automatically replicated on all nodes by the framework. However, to also
apply to non-SSI cluster operating systems, the work presented in this paper
is based on a modified version of the PlugProPol framework, in which the SSI
view of scheduler configuration is disabled.

PlugProPol (Figure 3) defines five component types: probes, scheduling poli-
cies, filters, schedulers (not described in this paper), and process sets (not de-
scribed in this paper).

Probes, scheduling policies, and filters are implemented as Linux kernel mod-
ules that are dynamically loaded when the first component that they implement
is instantiated, and unloaded when no component that they implement exist
anymore in the configured schedulers. Schedulers and process sets are generic
components implemented by the framework.

8



Figure 3: Architecture of the PlugProPol framework.

In the PlugProPol framework, the interfaces for data/event flows are de-
rive from sources (implemented by probe sources and filters) and sinks (imple-
mented by filters and by scheduling policies ports) concept. Sources produce
data and/or events, that are retrieved by sinks. Sources can publish events
(for instance to notify new values of their data) for which sinks define notify
methods called update value, and sinks can collect data from sources using
the get value methods of sources. To protect against dynamic removals of
components, a component never directly refers to a connected component but
instead always calls functions of the framework that will in turn call methods
of the connected component with the needed precautions.

Figure 4: Architecture of probes.

Figure 4 shows the architecture of probes. Every probe contains a set of
data/event sources defined by the designer, and represented as sub-directories
of the probe in configfs. Probe sources are linked to sinks (filters or scheduling
policies ports) by drawing symbolic links from their representing directory to

9



arbitrary-named entries in the sinks’ directories. Probes doing periodic measures
define a perform measurement method that will be called periodically by the
framework using the period configured for the probe.

Figure 5: Architecture of scheduling policies.

Scheduling policies (Figure 5) provide a new task node method in order
to choose the target node when the fork system call is called. They collect their
information using ports, that are sub-directories implementing sinks.

Figure 6: Architecture of filters.

A filter (Figure 6) is represented by a directory, and implements a source,
connected to a scheduling policy port or to another filter sink, and a sink that
can be connected either to a filter source or to a probe source. To connect a port
(resp. filter sink) to a filter source, the administrator creates a sub-directory in
the port’s (resp. filter sink’s) directory, which creates a new filter and connects
it to the port (resp. filter sink).

10



3.3 Scheduling Configuration Changer

The Scheduling Configuration Changer (SCC) is the component that is in charge
of choosing the proper scheduling configuration (see the definition of the schedul-
ing configuration in Section 3.1) based on different resource measurements (e.g.
CPU load, ...). By doing that, it adapts the scheduler to the changing state of
the cluster. The selection of a scheduling configuration is completely automated.
The user only creates a proper settings file in which he defines all the schedul-
ing configurations. He also implements the selector that is used for selecting a
proper scheduling configuration (see the definition of selector in Section 3.1).
After that, he loads the settings file to the SCC. The SCC then takes care of
loading, unloading and parameter changing of all the PlugProPol components
(i.e. probes, policies, filters). It also takes care of connecting the components.
Since no user intervention is needed, the scheduler is much more adaptable to
the changes in the state of the cluster.

The SCC runs in the user-space. This way, as we already mentioned in
Section 3.2.2, the SCC implementation can be much more sophisticated. This
allows us to provide, among other things:

• a more robust and user-friendly interface: since SCC runs in user-space,
we can implement settings files as XML files. Users can read and modify
such files very easily. If the SCC would have been implemented in kernel-
space, just using settings files, it would haven been very complicated to
just parse XML settings files,

• a better working scheduling configuration selectors: in user-space, we can
implement much more complicated logic for selecting scheduling config-
urations. For example, we could use some computational intelligence li-
braries for deciding which configuration to choose, see for example Franke
et. al [9]. In kernel-space, it would have been impossible to use any user-
space libraries. As a consequence, the selection logic would have been
much simpler and thus less efficient.

The disadvantage of running SCC in the user space is the overhead induced due
to the system calls which are needed for SCC to communicate with PlugProPol
which is executing in kernel space. We claim this overhead to be insignificant,
since the communication with the PlugProPol is not frequent. It occurs only
once every few seconds.

The SCC component consists of two main parts (see Figure 7). The first
part is the settings file parser. It is used for parsing scheduler’s settings
files and extracting all the necessary data about scheduling configurations. We
decided to write scheduler settings in XML format. This format can be read
and modified very easily by the users and can easily be parsed by computers.
The structure of the settings file is presented in the Figure 8. This file contains
the definitions of all the available scheduling configurations. Each scheduling
configuration contains a list of actions a PlugProPol framework has to perform
when a given scheduling configuration is selected. The most important actions
were already mentioned in previous sections of the paper: loading and unloading
of probes/policies/filters, setting their parameters (e.g. for probes, we can set
their probing frequency, for scheduling policies, we can set the thresholds which
trigger process migrations), connecting scheduling policies to probes, etc. The

11



Figure 7: Architecture of the Scheduling Configuration Changer.

settings file also contains a path to the selector, a component which initiates
the exchange of scheduling configurations. The selector is implemented by the
user and contains all the necessary logic for selecting the proper scheduling
configuration based on different resource measurements.

Figure 8: Structure of the scheduling settings file.

The second part is the action executer. It is in charge of initiating com-
mands to the PlugProPol system to load and unload probes/policies/filters,
change their parameters, make connections, etc. These actions are performed
every time the scheduling configuration is replaced. The component also takes
care of reading resource measurements from the probes and passes them to the
selector. Obviously, the action executer component is tightly coupled with the
PlugProPol system. Basically, all it does is execute configfs commands on Plug-
ProPol (as mentioned in Section 3.2.2, this is how the PlugProPol actions are
triggered).

The single SCC instance is only in charge of a node it is running on. As a

12



consequence, each cluster node needs to host its own SCC instance. We have
chosen this per-node approach since it allows us to provide much more efficient
scheduling strategies than the approach with a single centralized SCC instance.
At a given point in time, the scheduling configurations that are selected on each
of the nodes do not have to be the same. Each node can adapt the schedul-
ing configuration to its local load. Obviously, such scheduling is much more
adaptable than the one where a single global scheduling configuration would be
chosen based on a average global state in the cluster. For example, consider
an SCC system that is configured in a way that adapts, among other things,
the probes’ measurement frequency to the CPU usage: when the CPU usage
is high, the probe measurements are less frequent compared to when the CPU
usage is low. This way, the SCC system reduces the probing overhead when
more processing power is needed. It is obvious that having a separate SCC
service on each cluster node which only takes care of changing the measurement
frequency of that single node is much more adaptable than having a global SCC
service and a common probing frequency for the whole cluster. Of course, the
per-node scheduling also has disadvantages. Since we are dealing with multi-
ple SCC services we have to provide a way for them to exchange data. This
makes the SCC system more complex. Furthermore, there is a possibility that
a group of nodes will continuously swap the processes among themselves due to
different scheduling configurations that are selected on each of the nodes. The
implementation of mechanisms that would prevent that is a part of our future
work.

In order for a user to establish a customizable scheduler in the cluster, he
has to create a proper settings file in which he describes all the scheduling
configurations for different states of the cluster. Each scheduling configuration
needs to contain the list of probes, policies and filters that need to be loaded
when the configuration is selected. Additionally, it has to include the list of
all the connections between the PlugProPol entities. The user also needs to
provide the implementations of all the necessary PlugProPol entities. He can
use existing entities or implement them by himself.

One of the most important things when establishing scheduling is imple-
menting selector. As already mentioned in Section 3.1, the selector implements
all the necessary logic for selecting a particular scheduling configuration based
on different resource measurements. Since the selector has to be highly cus-
tomizable (it has to be able to handle diverse user-defined cluster states), its
logic can get very complex. As such, they cannot be realized with a set of pre-
defined rule types (such as if-then rules). Instead, they have to be implemented
as separate plug-ins and added to SCC via settings files.

4 Discussion

The system we presented in Section 3 has many advantages over traditional
job management systems. Since it allows process migration to different cluster
nodes while the jobs are executing, it enables much more optimized distribution
of the load in the cluster. At any time, the processes from the overloaded nodes
can be moved to the less loaded nodes. This greatly improves the utilization of
the cluster and makes the average response time for the jobs shorter.

The second advantage is the ability to automatically exchange scheduling

13



configurations based on the state of the cluster (as mentioned earlier, the clus-
ter states are defined using various resource measurements). No user interven-
tion is required. This is beneficial since cluster administrators are releaved of
the burden of having to periodically check for cluster load and manually adapt
scheduling algorithms to it. Moreover, automatized exchange of scheduling con-
figurations enables the scheduler to adapt to the changing cluster state much
more quickly than with the manual reconfiguration. The cluster benefits from
a better adaptability in various ways. For example, automatic exchange of
scheduling configurations improves utilization of the cluster even further, it also
enables lower energy consumption (see Section 1), which is becoming more and
more important these days.

On the other hand, since the system is in an early development stage, it also
has some drawbacks. For example, the SCC framework does not offer much
functionality that would ease the implementation of selectors for the user (e.g.
some set of predefined components that would include simple rules for exchang-
ing scheduling configurations. These rules would then be combined together to
form more complicated rules. This concept is the same as with Lego bricks).
Since there are no predefined components available, the whole burden of imple-
menting logic for the selector lies on the user. Furthermore, since at a given
point, different nodes can have different scheduling configurations with different
goals selected (i.e. multiple scheduling configurations exist in the cluster at a
given moment), this could lead to process swapping (i.e. the set of processes is
continuously migrated within a group of nodes). For example, if a user is not
careful and allows situations in which some nodes use a scheduling configuration
for optimizing CPU usage and the others use a configuration for memory opti-
mization, it could happen that under certain conditions, both groups would start
swapping processes. Obviously, the swapping introduces unnecessary overhead
and significantly deteriorates the cluster performance. So far, no mechanisms
for handling such issues have been examined. We are planning to do that as a
part of our future work.

5 Conclusion

In this paper, we described a cluster scheduling system that can automatically
adapt itself to the changing system state of a cluster. Since no human in-
tervention is needed, the system significantly improves the adaptability of the
cluster and increase its utilization. For the implementation, we have chosen
the Kerrighed operating system, however our approach can be used on every
operating system that enables process migration among various cluster nodes.
We described both components of our scheduling system: the Pluggable Probes
and Scheduling Policies (PlugProPol), a framework for managing probes, poli-
cies and filters, and Scheduling Configuration Changer (SCC), an implementa-
tion of infrastructure for selecting scheduling configuration based on resource
measurements. We believe our system has many advantages over traditional
scheduling systems. For example, since no user intervention is required, the
cluster administrators are releaved of the burden of having to periodically check
for cluster load and manually adapt scheduling algorithms to it. Also, due to
the automated exchange of scheduling configurations, the scheduler is able to
adapt to the changing cluster state much more quickly than with manual recon-

14



figuration. This improves the utilization of the cluster. Of course, our system
also has some drawbacks. In this stage, the SCC system does not offer much
functionality that would ease the implementation of scheduling configuration
selectors, so the whole burden of implementing logic for selecting scheduling
configurations lies on the user. The second disadvantage is the possibility of
process swapping between a subset of nodes in the cluster. To overcome these
problems a somewhat deeper understanding of the problem area is necessary.
Thus, we decided to put the solving of the issues above as a part of our future
work.

6 Acknowledgements

The work has been partially funded by the European Community under the
FP6 IST project XtreemOS, http://www.xtreemos.eu

References

[1] configfs pseudo file system. http://lwn.net/Articles/148973/, http://
lwn.net/Articles/130342/, http://lwn.net/Articles/148987/, 2008.

[2] Kerlabs. http://www.kerlabs.com/, 2008.

[3] Kerrighed. http://www.kerriged.org/, 2008.

[4] A. Barak, S. Guday, and R. Wheeler. The MOSIX Distributed Operating
System, Load Balancing for UNIX, volume 672 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1993.

[5] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and
R. Yahyapour. Enhanced Algorithms for Multi-Site Scheduling. In Proceed-
ings of the 3rd International Workshop on Grid Computing, Baltimore, vol-
ume 2536 of Lecture Notes in Computer Science, pages 219–231. Springer,
2002.

[6] C. Ernemann and R. Yahyapour. ”Grid Resource Management - State of the
Art and Future Trends”, chapter ”Applying Economic Scheduling Methods
to Grid Environments”, pages 491–506. Kluwer Academic Publishers, 2003.

[7] C. Franke, F. Hoffmann, J. Lepping, and U. Schwiegelshohn. Development
of scheduling strategies with genetic fuzzy systems. Applied Soft Computing
Journal, 8(1):706–721, January 2008.

[8] C. Franke, A. Hohl, P. Robinson, and B. Scheuermann. On business grid
demands and approaches. In Proceedings of the 4th International Workshop
on Grid Economics and Business Models (GECON 2007), volume 4685 of
Lecture Notes in Computer Science, pages 124–135. Springer, 2007.

[9] C. Franke, J. Lepping, and U. Schwiegelshohn. Genetic fuzzy systems
applied to online job scheduling. In Proceedings of the 2007 IEEE Interna-
tional Conference on Fuzzy Systems, pages 1573–1578, London, June 2007.
IEEE, IEEE Press.

15



[10] C. Franke, J. Lepping, and U. Schwiegelshohn. On Advantages of Schedul-
ing Using Genetic Fuzzy Systems. In Eitan Frachtenberg and Uwe
Schwiegelshohn, editors, Proceedings of the 12th Job Scheduling Strategies
for Parallel Processing, volume 4376 of Lecture Notes in Computer Science
(LNCS), pages 68–93. Springer, January 2007.

[11] Ca. Franke and P. Robinson. Autonomic provisioning of hosted applica-
tions with level of isolation terms. In Proceedings of the Fifth IEEE Inter-
national Workshop on Engineering of Autonomic and Autonomous Systems
(EASE08), pages 107–112, Belfast, UK, 2008. IEEE Computer Society. to
appear.

[12] PBSPro homepage. http://www.pbsgridworks.com, March 2007.

[13] D. A. Lifka. The ANL/IBM SP scheduling system. In Proceedings of
Job Scheduling Strategies for Parallel Processing (JSSPP95), volume 949
of Lecture Notes in Computer Science (LNCS), pages 295–303. Springer,
1995.

[14] Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor - a hunter
of idle workstations. In ICDCS, pages 104–111, 1988.

[15] D. McLaughlin, S. Sardesai, and P. Dasgupta. Preemptive scheduling for
distributed systems. In Proceedings of the 11th International Conference
on Parallel and Distributed Computing Systems, September 1998.

[16] R. McNaughton. Scheduling with deadlines and loss functions. Management
Science, 6(1):1–12, October 1959.

[17] C. Morin, P. Gallard, R. Lottiaux, and G. Vallée. Towards an efficient
single system image cluster operating system. Future Generation Computer
Systems, 20(2), January 2004.

[18] TORQUE Resource Manager. Overview.
http://old.clusterresources.com/products/torque, March 2007.

[19] J. J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow,
U. Schwiegelshohn, and P. S. Yu. Scheduling parallelizable tasks to mini-
mize average response times. In Proceedings of the 6th annual ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA94), pages 200–209.
ACM Press, New York, USA, June 1994.

[20] G. Vallée, R. Lottiaux, L. Rilling, J.-Y. Berthou, I. Dutka-Malhen, and
C. Morin. A case for single system image cluster operating systems: the
kerrighed approach. Parallel Processing Letters, 13(2), June 2003.

[21] G. Vallée, C. Morin, J.-Y. Berthou, and L. Rilling. A new approach to
configurable dynamic scheduling in clusters based on single system image
technologies. In IPDPS ’03: Proceedings of the 17th International Sym-
posium on Parallel and Distributed Processing, page 91, Washington, DC,
USA, 2003. IEEE Computer Society.

16


