
Scalaris – Methods for a Globally

Distributed Key-Value Store

with Strong Consistency

Thorsten Schütt
Zuse Institute Berlin

XtreemOS Summer School 2010

Thorsten Schütt 3

Clients

P2P Overlay

Transactions

Replication

Key/Value Store
(simple DBMS)

ACID

Outline

P2P LAYER
scalability and self-management

x
x

Thorsten Schütt 5

P2P Layer

• implements a primitive key/value store
• synonyms: “key/value store” = “dictionary” = “map”, = …

• just 3 ops

• insert(key,value)

• delete(key)

• lookup(key)

Example:
A Key/value store with all

Turing award winners

Key Value

Backus 1977

Hoare 1980

Karp 1985

Knuth 1974

Wirth 1984

.

Thorsten Schütt 6

Nodes Maintain a Ring Structure

Keys

• define positions in the ring,

e.g. 0 – 2160 or strings

Nodes

• may join, leave or fail (churn)

• know several successors

• know their predecessor

• have random position in the
ring

nodes

2160, 0

2159

Thorsten Schütt 7

P2P Layer with Chord#

• Chord# uses keys directly as addresses in the ring

• no hashing, thereby order-preserving  enables range queries

• just need a total order on items

• The next node in the ring (clockwise) is responsible for a key

Key Value

Backus 1977

Hoare 1980

Karp 1985

Knuth 1974

Wirth 1984

.nodes

(Karp, …, Knuth]

(Backus, …, Karp]

keys

itemChord#

distributed

key/value

store

Thorsten Schütt 8

Routing Table and Data Lookup

Routing Table
• table contains log2N pointers

• pointers are exponentially spaced

Chord#

Thorsten Schütt 9

Routing Table and Data Lookup

Routing Table
• table contains log2N pointers

• pointers are exponentially spaced

Retrieving Items
• log2N hops

(Backus – Karp]

Example:
lookup(Hoare)
started from here

Chord#Chord#

Thorsten Schütt 10

P2P Layer with Chord#

• Chord# features
• fully decentralized, operations require only local knowledge

• self-organizes as nodes join, leave, and fail

• easy routing table maintenance

• ≤ log (N) hops

• range queries

average bandwidth

av
er

ag
e

la
te

n
cy

Thorsten Schütt 11

Failure detector

• Need a failure detector to check if nodes are alive.

• But failure detector may be wrong.
• Node dead? Or just slow?

• Even without churn, inconsistencies may occur!

• Two types of inconsistency
• responsibility inconsistency

• lookup inconsistency

Thorsten Schütt 12

How often does this occur?

• We simulated nodes with imperfect failure detectors
(A node detects another living node as dead probabilistically)

REPLICATION LAYER
providing data availability

Thorsten Schütt 14

Replication

• We use symmetric replication
• Use a globally known function

to determine a set of keys
under which the data is stored 

• Must ensure data consistency
• need quorum-based methods

Thorsten Schütt 15

Replication and Quorum-based Algorithms

• Only read/write on majorities:

• Concurrent operations have overlapping majorities
=> conflict detection

• Comes at the cost of increased latency
• but latency can be avoided by intelligent distribution over datacenters

r2r1 r3 r4 r5

majority

Thorsten Schütt 16

Replication and Quorum-based Algorithms

• Lookup inconsistency may result in more than f replicas

• Then, two (or more) non-overlapping majorities exist:

=> Must ensure that number of replicas is always ≤ f when using
simple majority access
• relaxed with stronger majorities

r2r1 r3’

r4 r5

majority 1
r3

majority 2

Thorsten Schütt 17

More consistent accesses
with replication and quorum access

TRANSACTION LAYER
coping with concurrency

Thorsten Schütt 19

Challenges for Transactions in SONs

• churn
• nodes may leave, join, or crash at any time

 changing responsibilities

• “crash stop” fault model

• no perfect “failure detector”
• never know whether a node crashed or just slow network

Thorsten Schütt 20

Goal: Strong Consistency

• What is it?
• When a write is finished, all following reads will return the new value.

• How to implement?

• Always read/write majority f/2 + 1 of f replicas.

=> Latest version is always in the read/write set

Thorsten Schütt 21

Goal: Atomicity

• What is it?
• Make all or no changes!

• Either ‘commit’ or ‘abort’.

• How to implement?
• 2PC? Blocks if the transaction manager fails.

• We use a variant of Paxos Commit

o non blocking, because of multiple acceptors

Thorsten Schütt 22

Transactions + Replicas

BOT

debit (a, 100);

deposit (b, 100);

EOT

BOT

debit (a1, 100);

debit (a2, 100);

debit (a3, 100);

deposit (b1, 100);

deposit (b2, 100);

deposit (b3, 100);

EOT

Thorsten Schütt 23

Scalaris Transactions in Erlang

F = fun (TransLog) ->
{X, TL1} = scalaris:read(TransLog, "Account A"),
{Y, TL2} = scalaris:read(TL1, "Account B"),
if

X > 100 ->
TL3 = scalaris:write(TL2, "Account A", X - 100),
TL4 = scalaris:write(TL3, "Account B", Y + 100),
{ok, TL4};

true ->
{ok, TL2};

end
end,
MyTransLog = F(EmptyTransLog),

scalaris:commit(MyTransLog).

Thorsten Schütt 24

Adapted Paxos Commit

• Optimistic CC with fallback

• Write
• 3 rounds

• non-blocking (fallback)

• Read even faster
• reads majority of replicas

• just 1 round

• succeeds when
>f/2 nodes alive

Leader

replicated
Transaction
Managers

(TMs)

Items at
Transaction
Participants

(TPs)

1. Step

2. Step

3. Step

4. Step

5. Step

6. Step

After majority

1. Step:

O(log N) hops

2.-6. Step:

O(1) hops

IMPLEMENTATION
scalaris in practice

Thorsten Schütt 34

Scalaris Implementation

• Scalaris: 9,700 lines of Erlang code
• 7,000 for Chord# and infrastructure

• 2,700 for transactions

• Application specific code
• 1,300 for our Wikipedia code

• Java for rendering and user interface

Thorsten Schütt 37

Read Performance

Thorsten Schütt 38

Modify Performance

Thorsten Schütt 39

Publish-Subscribe

• Application running on top
of Scalaris
• Subscription Database

• Operations:
• Subscribe(Topic, URL)

o updates database

• Unsubscribe(Topic, URL)

o update database

• Publish(Topic, Message)

o sends HTTP-JSON to all
subscribed URLs

Key Value

Server Failures [URL1]

New Nodes [URL1, URL2, URL3]

Weather Changes [URL2]

DAX Changes [URL13]

Soccer Goals
[URL1, URL2, URL3,

URL4, URL5, …]

.

Thorsten Schütt 40

Summary

• http://scalaris.googlecode.com (BSD-License)

• scalable, transactional key-value store

• Java-API, JSON-HTTP, Ruby client, command line client, Erlang
client

http://scalaris.googlecode.com/
http://scalaris.googlecode.com/
http://scalaris.googlecode.com/

scalaris.googlecode.com

